Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
MU_po_vypolneniyu_RGR_1_LKh_2013.doc
Скачиваний:
787
Добавлен:
16.05.2015
Размер:
1.24 Mб
Скачать

2.2. Растворы

2.2.1 Теоретические пояснения

Концентрация раствора – это относительное содержание растворенного вещества в растворе. Для выражения концентрации растворов существует два способа.

I. долевой способ:

а) массовая доля вещества ω, безразмерная величина или выражается в процентах, вычисляют по формуле

%

где m(в-ва), масса вещества, г ;

m(р-ра), масса раствора, г.

б) мольная доля χ, величина безразмерная или выражается в процентах, вычисляют по формуле

%

где ν(в-ва), количество вещества, моль;

ν1+ν2+…, сумма количеств всех веществ в растворе, моль.

в) объемная доля φ, величина безразмерная или выражается в процентах, вычисляют по формуле

%

где V(в-ва), объем вещества, л;

V(смеси), объем смеси, л.

II. Концентрационный способ:

а) молярная концентрация CM, моль/л, вычисляют по формуле

где ν(в-ва), количество вещества, моль;

V(р-ра), объем раствора, л.

б) нормальная концентрация СН, моль/л, вычисляют по формуле

или

где ν(экв), количество вещества эквивалента, моль;

V(р-ра), объем раствора, л;

Z, фактор эквивалентности.

в) моляльная концентрация Сb, моль/кг, вычисляют по формуле

где ν(в-ва), количество вещества, моль;

m(р-ля), масса растворителя, кг.

г) титр Т, г/мл, вычисляют по формуле

где m(в-ва), масса вещества, г;

V(р-ра), объем раствора, мл.

Поскольку растворы это физико-химические системы необходимо рассмотреть процесс взаимодействия растворенного вещества с водой.

При образовании растворов характер взаимодействия компонентов определяется их химической природой, что затрудняет выявление общих закономерностей. Поэтому удобно прибегнуть к некоторой идеализированной модели раствора. Такой раствор, образование которого не связано с тепловым эффектом и с изменением объема называют идеальным раствором.

Хотя большинство растворов и не обладает в полной мере свойствами идеальных, однако свойства многих из них могут быть описаны при помощи этой модели. Наиболее подходящими в этом плане являются разбавленные растворы, в которых содержание растворенного вещества очень мало по сравнению с содержанием растворителя.

Рассмотрим свойства разбавленных растворов, которые зависят от числа частиц растворенного вещества и от количества растворителя, но практически не зависят от природы растворенных частиц (коллигативные свойства).

К таким свойствам относятся: понижение давления насыщенного пара растворителя над раствором, повышение температуры кипения, понижение температуры замерзания раствора по сравнению с чистым растворителем, осмотическое давление.

Осмос - это односторонняя диффузия веществ из растворов через полупроницаемую мембрану, разделяющую раствор и чистый растворитель или два раствора различной концентрации.

В системе растворитель-раствор молекулы растворителя могут перемещаться через перегородку в обоих направлениях. Но число молекул растворителя, переходящих в раствор в единицу времени, больше числа молекул, перемещающихся из раствора в растворитель.

Давление, которое надо приложить, чтобы скорости обоих процессов были равными, называют осмотическим.

Растворы, характеризующиеся одинаковым осмотическим давлением, называются изотоническими.

Осмотическое давление определяют согласно закону Вант - Гоффа

,

где ν, количество вещества, моль;

R, газовая постоянная, равная 8,314 Дж/(моль·К);

Т, абсолютная температура, К;

V, объем раствора, м3

Согласно закону Рауля, относительное понижение давления насыщенного пара над раствором равно мольной доле растворенного нелетучего вещества:

Повышение температуры кипения и понижение температуры замерзания растворов по сравнению с чистым растворителем, по следствию из закона Рауля прямо пропорциональны моляльной концентрации растворенного вещества:

где - изменение температуры,- моляльная концентрация (моль/кг), - коэффициент пропорциональности, в случае повышения температуры кипения называется эбулиоскопической константой, а для понижения температуры замерзания – криоскопической. Эти константы, численно различные для одного и того же растворителя, характеризуют повышение температуры кипения и понижение температуры замерзания одномоляльного раствора, т.е. при растворении 1 моль нелетучего электролита в 1000 г растворителя. Поэтому их часто называют моляльным повышением температуры кипения и понижением температуры замерзания раствора. Криоскопические и эбулиоскопические константы не зависят от природы растворенного вещества, а лишь зависят от природы растворителя и характеризуются размерность.

Растворитель

Температура, 0С

Константа,

Кипения

Плавления

Н2О

100

0

0,52

1,86

С6Н6

80,1

5,5

2,53

5,12

ССI4

76,5

-22

5,03

30,0

СНСI3

61,7

-63,5

3,63

4,7

Выше приведены криоскопические и эбулиоскопическиеконстанты для некоторых растворителей:

Криоскопия и эбулиоскопия – методы определения молекулярных масс растворенных веществ. Эти методы позволяют определить молекулярную массу не диссоциирующих при растворении веществ по понижению температуры замерзания и по повышению температуры кипения растворов известной концентрации:

где - масса растворенного вещества в граммах,- масса растворителя в граммах,- молярная масса растворенного вещества вг/моль, 1000- коэффициент пересчета от граммов растворителя к килограммам. Из (1) молярная масса неэлектролита выразится как:

Растворимость S показывает, сколько граммов вещества может раствориться в 100 г воды при данной температуре. Растворимость твердых веществ с ростом температуры, как правило, возрастает, а для газообразных веществ - уменьшается.

Твердые вещества характеризуются самой различной растворимостью. Наряду с растворимыми веществами существуют малорастворимые и практически нерастворимые (в воде). Однако абсолютно нерастворимых веществ в природе нет. Рассмотрим равновесие между твердым осадком труднорастворимой соли AgCI и ее ионами в растворе:

AgCl(тв) = Ag+ + Clˉ

Константа равновесия имеет вид

K=[Ag+] [Clˉ].

При этом концентрация конденсированной фазы [AgCl(тв)] как постоянная входит в величину К. Тогда константа равновесия определяется только произведением концентраций ионов [Ag+] и [Clˉ] в растворе и называется произведением растворимости:

ПР=[Ag+] [Clˉ].

Для соединения АmBn

ПР= [А+]m [Bˉ]n

Величина ПР характеризует растворимость труднорастворимого электролита при постоянной температуре.

Следует различить понятия произведение растворимости (ПР) и произведение ионов (ПИ).

ПР, величина постоянная и показывает какое значение имеет произведение молярных концентраций ионов, образующиеся при диссоциации слабо растворимого вещества в насыщенном этим веществом растворе (водный раствор, содержащий осадок этого вещества).

ПИ это ионное произведение концентраций ионов в любом, искусственно созданном ( не насыщенном) растворе. Если значение ПИ > ПР, то образуется осадок мало растворимого вещества.

Пользуясь значениями ПР, можно рассчитать молярную концентрацию ионов в насыщенном растворе. Сопоставлением значений ПР и ПИ можно предсказать, выпадет ли осадок, при смешении двух растворов с определенными концентрациями и объемами?

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]