
- •Введение. Общие вопросы фармакологии.
- •Определение фармакологии и ее место среди других медико-биологических наук. Цели и задачи фармакологии.
- •Природа лекарств. Основные понятия лекарствоведения.
- •Источники получения лекарственных средств. Пути изыскания новых лекарств. Основные этапы их внедрения в медицинскую практику.
- •Фармакологический и Фармакопейных комитеты и их назначение. Национальная и международная фармакопея.
- •Принципы классификации лекарственных средств
- •Понятие о международных непатентованных и фирменных (торговых) наименованиях лекарств.
- •Научная информация о лекарственных средствах
- •Фармакокинетика
- •Пути и способы введения лекарственных средств в организм. Сравнительная характеристика. Факторы, обуславливающие выбор пути введения и лекарственной формы.
- •Основные механизмы проникновения лекарства через биологические мембраны. Факторы, влияющие на процессы абсорбции лекарств.
- •Понятие о биодоступности
- •Транспорт и распределение лекарств
- •Элиминация лекарств
- •Биотрансформация лекарств. Несинтетические и синтетические реакции метаболизма.
- •Индивидуальные различия в скорости метаболизма лекарств
- •Эффект первого прохождения. Пролекарства. «Суицидальные» лекарства.
- •Выведение лекарственных средств из организма
- •Количественные законы элиминации лекарств. Кинетика элиминации первого и нулевого порядка.
- •Клиренс и период полуэлиминации, их значение для управления режимом дозирования.
- •Принципы дозирования лекарств. Доза, ее способы и варианты введения.
- •Дискретное (прерывистое) введение лекарств
- •Непрерывное внутрисосудистое введение
- •Терапевтический лекарственный мониторинг
- •Фармакоэкономические понятия
- •Фармакодинамика
- •Механизмы возникновения первичной фармакологической реакции. Природа рецепторов.
- •Взаимодействие лекарственных веществ с рецепторами.
- •Теории взаимодействия лекарственных веществ с рецепторами.
- •Соотношение между концентрацией лекарственного вещества и его фармакологическим эффектом Градуальная и квантовая кривые зависимости «доза-эффект»
- •Зависимость действия лекарств от их структуры, физико-химических свойств, лекарственной формы и путей введения.
- •Проблема биоэквивалентности лекарственных средств
- •Взаимодействие лекарственных средств
- •Усиление эффектов комбинации лекарств
- •Ослабление эффектов комбинации лекарств
- •Лекарственная несовместимость
- •Механизмы взаимодействия лекарств
- •Нежелательное действие лекарств
- •Реакции типа в
- •Реакции типа с
- •Реакции типа е
- •Значение индивидуальных особенностей организма для реализации действия лекарств
- •Общие принципы лечения отравлений
- •Фармакология синаптической передачи в периферической нервной системе
- •Станислав Лем
- •Передача импульсов в вегетативной нервной системе.
- •Характеристика холинорецепторов
- •Основные этапы холинергической передачи и их фармакологическая коррекция
- •Характеристика адренорецепторов
- •Основные этапы адренергической передачи и их фармакологическая коррекция
- •Эффекты активации симпатических и парасимпатических нервов
- •Неадренергический и нехолинергический отдел вегетативной нервной системы.
- •Холинергческие средства. Холинергические агонисты.
- •Классификация холинергических агонистов
- •М-холиномиметические средства
- •М,н-холиномиметики
- •М,н-холиномиметики прямого действия
- •Непрямые м,н-холиномиметики (антихолинэстеразные средства)
- •Интоксикация фос
- •Реактиваторы холинэстеразы
- •Н-холиномиметики
- •Стимуляторы высвобождения ацетилхолина
- •Холинергические антагонисты
- •Новые селективные антагонисты м-холинорецепторов
- •Отравление м-холиноблокирующими средствами
- •Ганглиоблокирующие средства (нн-холиноблокаторы)
- •Миорелаксанты (нм-холиноблокаторы)
- •Антидеполяризующие миорелаксанты
- •Деполяризующие миорелаксанты
- •М,н-холинонегативные средства
- •Средства для наркоза
- •Классификация средств для наркоза.
- •Ингаляционные анестетики
- •Неингаляционные анестетики
- •Фв: флаконы с порошком по 0,5 и 1,0
- •Противопаркинсонические средства
- •Противоэпилептические и противосудорожные средства
- •Рд: Терапевтические дозы составляют 1800-3600 мг в день.
- •Фв: капс. 100, 300 и 400 мг
- •Фэ: табл. По 25, 50 и 100 мг, табл. Жевательные по 5, 25 и 100 мг
- •Опиоидные (наркотические) анальгетики
- •Витамины и витаминоподобные средства. Средства, влияющие на процессы тканевого дыхания. Биогенные стимуляторы
- •Жирорастворимые витамины.
- •Водорастворимые витамины13.
- •Витаминоподобные средства
- •Поливитаминные средства
- •Классификация витамин-содержащих препаратов
- •Средства, влияющие на процессы тканевого дыхания Общие представления о физиологии и патофизиологии тканевого дыхания.
- •Определение понятий и классификация
- •Классификация лекарственных средств, влияющих на процессы тканевого дыхания:
- •Биогенные стимуляторы
Средства, влияющие на процессы тканевого дыхания Общие представления о физиологии и патофизиологии тканевого дыхания.
Процесс тканевого дыхания – это процесс окисления углеводородных субстратов в митохондриях, сопровождающийся синтезом АТФ. В клетках организма человека преобладает аэробный (кислород-зависимый) метаболизм, который требует для окисления субстратов кислорода. На молекулы кислорода специальными ансамблями ферментов (дыхательными цепями) переносятся электроны и протоны от субстратов оксиления. Перепады энергии, которые образуются при переносе протонов фермент Н+-АТФаза преобразует в энергию макроэргических связей АТФ. Таким образом, процесс тканевого дыхания предполагает наличие 3 участников – субстратов, кислорода и макроэргических молекул – аккумуляторов энергии.
Субстраты окисления.
Основными субстратами окисления в организме являются углеводы (глюкоза и гликоген), которые расщепляются гликолитическим путем до молочной кислоты (при недостатке кислорода) или до СО2и Н2О (при избытке кислорода). Процесс гликолиза – энергетически выгоден (1 моль глюкозы дает 38 моль АТФ) и весьма экономичен (на каждый потраченный моль кислорода синтезируется 6,33 моль АТФ). Однако, гликолитический путь имеет ряд ограничений:
Углеводы – осмотически активные молекулы, они легко приобретают гидратную оболочку, что не позволяет создавать их большие запасы в организме, т.к. грозит водной перегрузкой.
Гликолитический путь требует инсулина – единственного гормона, который способен обеспечить транспорт глюкозы в клетку.
Гликолитический путь жестко регулируется количеством поступающего в клетку кислорода. Снижение парциального давления кислорода тормозит активность этого пути (эффект Пастера).
Гликолитический путь является основой метаболизма нервной ткани, преобладает в мышечной ткани в первые 15-20 мин работы.
Липолитический путь метаболизма представлен катаболизмом жирных кислот, которые обеспечивают организм энергией за счет процесса -окисления. Источником жирных кислот служат пищевые продукты и триглицериды жировых депо организма. Липолитический путь метаболизма имеет ряд преимуществ, по сравнению с гликолитическим путем:
Триглицериды – осмотически неактивные вещества, они не способны задерживать в организме воду, поэтому объем жировых депо организма теоретически не может быть ограничен.
Липолитический путь регулируется ансамблем ферментов и гормонов, функции которых взаимно дополняют и перекрывают друг друга. Если выпадает функция одного из регулирующих факторов работа липолитического пути существенно не страдает.
Липолитический путь выгоднее гликолитического в плане энергопродукции. -Окисление гексановой кислоты (С6 аналог глюкозы) дает на 1 моль вещества 45 моль АТФ.
В процессе липолитического пути метаболизма может образоваться достаточное количество ацетил-КоА для синтеза кетоновых тел – транспортной формы энергетических субстратов для органов, где липолиз изначально протекать не может.
Липолитический путь не подвержен эффекту Пастера и может протекать даже при весьма низком напряжении кислорода в тканях.
Схема 6. Свободно
радикальные процессы в организме.
Свободнорадикальные процессы включают
процесс генерации активных форм
кислорода (1) и процесс развития
перекисного окисления (2). В прямоугольных
блоках указаны вещества, способные
нейтрализовать каждый из этапов развития
данного процесса. SOD
– супероксиддисмутаза, SH-Glu
– глутатион, Vit
– витамины, CoQ
– коэнзим Q,
LH
– липид, содержащий легкоокисляемый
протон.
Кислород.
В нормальных условиях 98-99% молекулярного кислорода подвергается тетравалентному восстановлению, в результате переноса электронов и протонов по системе цитохромов дыхательных цепей митохондрий, путем следующей реакции:
.
Однако, 1-2% от общего количества кислорода подвергается одновалентному восстановлению, при этом образуются активные формы кислорода (АФК) – молекулы, которые имеют неспареный электрон: супероксидный анион (О2•), перекись водорода (Н2О2), гидроксильный радикал (•ОН), синглетный кислород (1О2).
Генерация кислородных радикалов протекает в 2 этапа:
Ферментативное образование супероксидного радикала:
В нейтрофилах, моноцитах и макрофагах есть фермент НАДФ-оксидаза, который за счет элеткронов НАДФ восстанавливает кислород (т.н. «кислородный взрыв» макрофагов).
В кишечнике, печени, почках есть фермент ксантин-дегидрогеназа, который обеспечивает окисление гипоксантина (продукт обмена пуринов) в мочевую кислоту. В условиях гипоксии этот фермент окисляется и превращается в ксантин-оксидазу, которая выполняет окисление гипоксантина с одновременной генерацией супероксидногорадикала.
Аутоокисление гемоглобина до метгемоглобина, также сопровождается генерацией супероксидного радикала.
Синтез катехоламинов Р450-гидроксилазными системами, также связан с генерацией супероксидного радикала.
Неферментативная генерация активных форм кислорода. Осуществляетс при помощи 2 реакций:
Реакция Haber-Weiss– реакция образования активных форм кислорода из суперокисдного радикала в пристуствии перекиси водорода или металлов с переменной валентностью (Fe3+,Cu2+):
О2•+Н2О2 → О2+НО-+НО•;
Fe3++О2• → Fe2++1О2;
Cu2++О2• → Cu++1О2
Реакция Fenton– реакция образования активных форм кислорода из перекиси при участииFe2+:
Fe2++Н2О2 → Fe3++НО-+НО•.
Образовавшиеся активные формы кислорода – высокореакционные молекулы, которые имеют весьма короткий период существования, но способны вызвать окисление ряда макромолекул организма. Процесс окисления макромолекул – важный физиологический процесс, но если он выходит из-под контроля, то может нанести весьма существенный вред (таблица 6).
Таблица 6. Мишени воздействия активных форм кислорода и их значение.
Макромолекулы-мишени |
Физиологическая роль |
Патофизиологическая роль |
Гиалуроновая кислота.Под влиянием АФК происходит образование эндоперикисей кислоты и разрыв ее цепей на мелкие фрагменты |
Обеспечивает миграцию макрофагов из сосудов к очагу воспаления или инфекции. |
Вызывает деградацию суставных хрящей, развитие артритов и артрозов |
Нуклеиновые кислоты. АФК вызывают модификацию остатков азотистых оснований:
Такая модификация приводит либо к аномальным разрывам ДНК, либо к неправильному спариванию оснований. |
|
Активация онкогенов, канцерогенный эффект. |
Белки.Происходит модификация остатков аминокислот:
|
|
Окисление долгоживущих белков хрусталика (кристаллина, вителлина и др.) с развитием катаракты. |
Липиды.Окисление ненасыщенных связей с образованием эндоперикисей, которые в последующем распадаются на алифатический углеводород, малоновый диальдегид и короткоцепочечную жирную кислоту. |
|
|
Система, при помощи которой клетки сдерживают процесс перекисного окисления в допустимых физиологических границах называется системой антиоксидантов. Различают 2 группы антиоксидантов:
Антиоксиданты, которые непосредственно нейтрализуют АФК:
Супероксиддисмутаза, простагландины Е2иD2– нейтрализуют супероксидный радикал в реакции:О2•+ 2Н+ → О2+Н2О2.
Каталаза, глутатион-пероксидаза (при участии восстановленной формы глутатиона) – нейтрализуют перекиси в реакциях:
2SH-Glu+Н2О2 → 2Н2О+Glu-S-S-Glu;
2H2O2 → O2+2H2O.
Мочевина – нейтрализует гидроксильные радикалы.
Антиоксиданты, которые реактивируют окисленные макромолекулы:
Витамин Е, -липоевая кислота, НАД, коэнзимQ10– восстанавливают эндоперекиси липидов.
Витамин С – восстанавливает мукополисахариды и белки.
Тиоредоксин, Глутаредоксин – ферменты, которые восстанавливают белки в реакциях:
;
.
Поли-АДФ-рибозил синтаза – фермент, который восстанавливает модифицированные азотистые основания в молекулах нуклеиновых кислот.
Макроэргические субстраты.
К макроэргическим субстратам относят молекулы АТФ, содержащие высокоэнергетические ангидридные связи, и некоторые другие молекулы, содержащие связи, энергия которых выше энергии связей АТФ, эти молекулы могут выступать в роли аккумуляторов энергии и отдавать ее АДФ путем субстратного фосфорилирования с образованием АТФ. В таблице 7 перечислены виды таких макроэргических молекул.
Таблица 7. Характеристика макроэргических молекул организма
Макроэргическая молекула |
Энергия связи, ккал/моль |
Локализация (депо) |
Физиологическая роль |
Фосфоенолпируват 1,3-Бисфосфоглицерат
Ацетилфосфат Фосфокреатин Фосфоаргинин АТФ |
-14,8 -11,8
-11,3 -10,3 -9,1 -7,5 |
Печень, скелетные мышцы Эритроциты
Мышцы, миокард, мозг Мышцы беспозвоночных Все ткани |
Глюконеогенез, липогенез Синтез 2,3-бисфосфоглицерата, обмен кислорода
Обеспечение работы Обеспечение работы Синтетические процессы, работа тканей |