
- •Тема №8: «защита металлов от коррозии»
- •Общие положения по защите металлов от коррозии. Основные факторы рационального конструирования. Легирование металлических материалов.
- •Изменение состава и свойств коррозионной среды.
- •Электрохимическая защита: виды и механизм действия.
- •Защитные покрытия: виды, методы нанесения и области применения.
Тема №8: «защита металлов от коррозии»
Вопросы лекции:
1.Общие положения по защите металлов от коррозии. Основные факторы рационального конструирования. Легирование металлических материалов.
2.Изменение состава и свойств коррозионной среды.
3.Электрохимические методы защиты от коррозии: виды и механизм действия. Протекторная, катодная, анодная защиты.
4.Защитные органические и неорганические покрытия: виды, методы нанесения и области применения. Органические покрытия (смазка, лакирование, окраска, нанесение полимеров). Неорганические покрытия (оксидные, фосфатные, хроматные).
5. Обработка окружающей среды: удаление или ослабление окисляющего действия компонентов среды, введение ингибиторов.
Защита от коррозии — это комплекс мероприятий, направленных на предотвращение и замедление коррозионных процессов, сохранение и поддержание работоспособности узлов и агрегатов машин, оборудования и сооружений в требуемый период их эксплуатации.
-
Общие положения по защите металлов от коррозии. Основные факторы рационального конструирования. Легирование металлических материалов.
Рациональное конструирование изделий — первый и обязательный этап борьбы с коррозией, на стадии которого учитывают следующие обязательные факторы:
-
Правильный выбор материалов (металлов, сплавов, герметиков, диэлектриков, пропиток и др.) для изделий и конструкций: стойких к данной коррозионной среде, не способных впитывать влагу, не выделяющих корррозионно-активных агентов при старении;
-
Рациональное сочетание и компоновка в одном узле деталей, изготовленных из металлов, отличающихся значениями электродных потенциалов: предотвращение их непосредственного контакта друг с другом и с коррозионной средой путем изоляции соприкасающихся поверхностей, применения различных прокладок, герметиков, чтобы исключить возможность контактной коррозии;
-
Оптимальная форма деталей: с дренажными отверстиями и проветриваемыми полостями, с минимумом коррозионно-опасных участков (углублений, пазов, щелей, канавок, зазоров, застойных зон);
-
Характер соединения элементов в сборке: сварные соединения предпочтительнее клепанных и болтовых, которые ведут к возникновению больших внутренних напряжений и пор;
-
Возможность нанесения и возобновление различных покрытий в процессе эксплуатации изделий и при их ремонте.
Легирование (модифицирование) металлических материалов — эффективный процесс повышения их стойкости к воздействию агрессивных сред при обычной и повышенных температурах. Сущность его состоит в том, что материал (металл, сплав), из которого изготавливают изделия, вводят легирующие компоненты, вызывающие его пассивацию. Различают объемное (металлургическое) и поверхностное (ионное) легирование.
Объемное легирование применяют в основном тогда, когда другие методы защиты от коррозии для данного материала не приемлемы. Его осуществляют на стадии выплавки конструкционных материалов. Считают, что легирующие компоненты диффундируют из объема на поверхность сплава и вместе с основным металлом окисляются (пассивируются) кислородом воздуха, оразуя устойчивые смешанные оксидные слои (защитные пленки), которые препятствуют дальнейшему проникновению коррозионной среды. Железо, алюминий, титан, магний, кадмий, цинк и их сплавы легируют хромом, никелем, молибденом, медью и др. В результате получают сплавы с более высокой коррозионной стойкостью, чем исходные материалы. Эти сплавы одновременно обладают жаростойкостью и жаропрочностью.
Жаростойкость — свойство материалов противостоять химическому разрушению под действием воздуха при высокой температуре.
Жаропрочностью — способность конструкционных материалов выдерживать без существенных деформаций механические нагрузки при высоких температурах в инертной среде.
Повышенной коррозионной стойкостью обладают, как правило, сплавы с определенным содержанием легирующего компонента, которое определяется некоторым его критическим значением (границей устойчивости), выше которого начинается избирательная коррозия: растворению подвергается легирующий компонент, а основной металл остается в виде «губки» или порошка. Граница устойчивости, зависящая также от вида коррозионной среды, — характерная для каждого типа сплава величина, например:
Тип сплава…………Со–Cr Fe–Cr Ni–Cr
Cr. % (масс.)……….. 8 12 14
В промышленности широко применяют объемно–легированные сплавы на основе:
А) железа — стали углеродистые, низколегированные, содержащие до 3 % (масс.) легирующих компонентов, и высоколегированные, или коррозионно-стойкие (например0 марки 12Х13, 12Х17, 30Х13, 20Х13 — первая цифра показывает содержание углерода в сотых долях процента (масс.), буква и цифра после нее — содержание хрома в % (масс.);
Б) меди — бронзы обычные (оловянистые с 8…10 (масс.) Sn и специальные (например, алюминиевые до 10% (масс.) Al); латуни (сплавы с содержанием 10…40% (масс) Zn); мельхиор (группа сплавов, содержащих, % (масс.): 5…..33 (Ni), ~ 1 (Fe), ~ 1 (Mn);
В) никеля — нихром (20% (масс.) Cr); хромель (10% (масс.) Сr);
Г) алюминия — дуралюмин (%(масс.)): 4 (Cu), 0,6 (Mg), 0,6 (Mn), 0,7 (Si), 0,7 (Fe)).
Главным недостатком объемного легирования является его дороговизна, так как зачастую используются легирующие компоненты высокой себестоимости.
Поверхностному легированию подвергаются уже готовые изделия. Его осуществляют методом ионной имплантации. Этот метод позволяет вводить любую модифицирующую добавку в любой металл при низкой температуре. Легирующий слой формируется в результате бомбардировки поверхности изделия ионами легирующих компонентов. Ускоренные ионы, проникая в глубь металла, тормозятся при столкновении с атомами, а затем нейтрализуются их свободными электронами. В результате ионы встраиваются в кристаллическую решетку металла, замещая узлы или располагаясь в междоузлиях. Главным недостатком поверхностного легирования являются сложность и высокая стоимость оборудования, а также малая величина модифицированного слоя. Достоинство — позволяет получать сплавы с такими металлами, как тантал, свинец, вольфрам, палладий, рутений, платина.