- •Введение
- •Глава 1 топологические пространства
- •1. Понятие множества. Операции над множествами. Отображения. Характеристическая функция множества
- •2. Топология и топологическое пространство. База топологии
- •3. Структура открытых множеств и окрестности
- •4. Понятие метрического пространства и топологии, определяемой метрикой. Примеры метрических пространств
- •5. Операция замыкания множества в топологическом пространстве
- •6. Внутренние точки множества, внутренность. Граница множества
- •7. Сепарабельные топологические пространства
- •8. Индуцированные топологии и фактортопология
- •9. Непрерывное отображение. Гомеоморфизм
- •10. Компактные пространства
- •Глава 2 свойства метрических пространств
- •1. Сходящиеся последовательности в метрических пространствах и полные метрические пространства
- •2. Теорема о пополнении метрического пространства
- •3. Критерий полноты пространства
- •4. Компактные множества в метрическом пространстве. Теорема Хаусдорфа
- •5. Критерии компактности в пространствах с[0, 1], lp. Теорема Арцела
- •6. Теорема Вейерштрасса о равномерном приближении и сепарабельность с[0, 1]
- •7. Отображение компактных множеств. Теорема Вейерштраса об ограниченности и достижении точных граней непрерывной функцией
- •8. Принцип сжимающих отображений и его применение
- •9. Нигде не плотные множества. Понятие категории множеств метрического пространства. Теорема Бэра
- •Глава 3 мера и измеримые множества
- •1. Системы множеств
- •2. Системы множеств в евклидовом пространстве
- •3. Функция множеств
- •4. Мера и ее простейшие свойства. Мера в евклидовом пространстве
- •5. Внешняя мера
- •6. Измеримые множества
- •7. Мера Лебега на Rn
- •Глава 4 измеримые функции
- •1. Измеримые функции и их свойства
- •2. Сходимость почти всюду
- •3. Сходимость по мере и ее свойства
- •4. Сравнение сходимости почти всюду и по мере
- •5. Почти равномерная сходимость. Теоремы Егорова и Лузина
- •Глава 5 интеграл лебега
- •1. Интеграл Лебега для простых и ограниченных функций на пространстве с конечной мерой
- •2. Основные свойства интеграла от ограниченной функции
- •3. Определение интеграла Лебега в произвольном случае
- •4. Предельный переход под знаком интеграла
- •5. Сравнение интегралов Римана и Лебега
- •6. Заряды. Теорема Радона—Никодима
- •Глава 6 нормированные и гильбертовы пространства
- •2. Конечномерные пространства. Конечномерность и компактность. Теорема Рисса о локальной компактности.
- •3. Скалярное произведение. Гильбертово пространство. Аксиомы и свойства. Ортонормированные системы. Ортогонализация по Шмидту. Тождество параллелограмма.
- •4. Ортогональность и ортогональное дополнение
- •5. Ряды Фурье в гильбертовом пространстве. Коэффициенты Фурье. Неравенство Бесселя и равенство Парсеваля. Полные и замкнутые ортонормированные системы
- •Глава 7 линейные операторы в нормированных пространствах
- •2. Пространство линейных непрерывных операторов и его полнота относительно равномерной сходимости операторов
- •3. Принцип равномерной ограниченности и теорема Банаха-Штейнгауза. Полнота пространства операторов относительно поточечной сходимости
- •4. Ядро оператора. Критерий ограниченности обратного оператора. Теоремы об обратном операторе
- •5. Примеры обратных операторов. Обратимость операторов вида (I - a) и (a - c).
- •6. График оператора и замкнутые операторы. Критерий замкнутости. Теорема Банаха о замкнутом графике. Теорема об открытом отображении
- •Xn(t)X(t) равномерно на [a, b],.
- •X'n(t) y(t) равномерно на [а, b].
- •Глава 8 линейные функционалы в нормированных пространствах
- •1. Линейные непрерывные функционалы. Продолжение по непрерывности. Теорема Хана-Банаха. Следствия из теоремы Хана-Банаха
- •2. Сопряженные пространства
- •3. Теорема Рисса об общем виде линейного функционала для пространства непрерывных функций
- •4. Пространства Лебега и сопряженные к ним
- •5. Изоморфизм и изометрия сепарабельных гильбертовых пространств. Общий вид линейного функционала в гильбертовом пространстве. Теорема Рисса-Фишера.
- •6. Сопряженный оператор. Условия существования сопряженного оператора. Замкнутость сопряженного оператора. Сопряженный оператор к ограниченному оператору и его норма.
- •7. Самосопряженный оператор. Норма самосопряженного оператора
- •Глава 9 спектральная теория операторов
- •1. Вполне непрерывные операторы и их свойства. Операторы Фредгольма и Гильберта-Шмидта
- •2. Теорема Шаудера о полной непрерывности сопряженного оператора. Уравнения первого и второго рода с вполне непрерывными операторами. Теорема о замкнутости области значений оператора
- •3. Альтернативы Фредгольма. Теорема Шаудера о неподвижной точке.
- •Предметный указатель
4. Сравнение сходимости почти всюду и по мере
Рассмотрим вопрос о сравнении приведенных сходимостей последовательностей измеримых функций. Приведем пример.
Пример 1. Пусть последовательность функций fn(x) на числовой прямой задана равенством: . Нетрудно видеть, что эта последовательность всюду сходится к единичной функции. Вместе с тем{x R: |1 – fn(x)| = (-, -n)(n, +) > ½} = и последовательность fn(x) не сходится по мере к единичной функции.
Таким образом, в общем случае из сходимости почти всюду не вытекает сходимость по мере. Однако критерий сходимости почти всюду позволяет легко установить следующую теорему.
Теорема 7 (Лебега). Если (Х) < и последовательность функций fn(x) f(x) почти всюду на X, то fn(x) f(x).
Может возникнуть вопрос: не эквивалентны ли понятия сходимости функциональных последовательностей по мере и почти всюду на множествах конечной меры? Следующий пример дает отрицательный ответ на этот вопрос.
Пример 2 (Рисса). Существует последовательность, сходящаяся по мере на отрезке [0, 1], но не сходящаяся почти всюду.
Для n = 0, 1,... и k = 0, 1,.. .2n – 1 положим
.
Геометрически эта последовательность строится по пачкам (по различным n).
Следующая 4 пачка будет состоять уже из 8 функций, которые будут принимать значения 1 на отрезках длины 1/23. Вообще n-ая пачка будет состоять 2n – 1 функций, которые равны 1 на отрезке длины 1/2n – 1, а в остальных точках они нули. Ясно, что для любого > 0 (будем еще считать, что < 1) и любой функции gn(x) из n-ой пачки выполняется равенство {x [0, 1]: |gn(x)| > } = 1/2n – 1. Это означает, что построенная последовательность функций сходится по мере к нулевой функции. Вместе с тем данная последовательность не сходится к 0 ни в одной точке. Действительно, не трудно видеть, что для любой точких0 [0, 1] в каждой пачке найдется функция, которая в этой точке обращается в 1.
Теорема 8 (теорема Рисса). Пусть (X, , ) –пространство с -конечной мерой и последовательность fn(x) f(x) на X. Тогда существует такая возрастающая последовательность натуральных чисел {nk}, что f(x) при п почти всюду на X.
Доказательство. Сначала предположим, что (Х) < . Возьмем n0 = 1 и для k = 1, 2,... выберем натуральное пk > пk - 1 так, чтобы
.
В силу сходимости по мере такая последовательность индексов найдется.
Докажем, что последовательность f(x) почти всюду на X. Действительно, если заданы > 0 и > 0, то подберем m0 так, чтобы и. Тогда при т>т0 имеем
Применяя теорему 3, убеждаемся в справедливости доказываемого утверждения в случае конечной меры.
Пусть теперь мера -конечна на X, т. е. X = где (Xn) < при n = 1, 2,... Поскольку fn(x) f(x) на X, для любого i последовательность fn(x) f(x) на Xi. Согласно уже доказанному, можно выделить подпоследовательность f1,n(1) f(x) почти всюду на X1. Поскольку эта подпоследовательность по-прежнему сходится по мере на любом Xi., из нее, в свою очередь, можно выделить подпоследовательность f2,n(2) f(x) почти всюду на X2. Продолжая этот процесс дальше, и рассматривая диагональную последовательность { fk,n(k) }k=1, видим, что для любого i эта последовательность сходится почти всюду на Xi., т. е. почти всюду на X, что и требовалось доказать.