- •Диаграмма прецедентов
- •Диаграмма активности
- •Диаграммы взаимодействия
- •Мультипликативная регрессионная модель
- •Обратная регрессионная модель
- •Экспоненциальная модель
- •Классификация экспериментов
- •Дискретные законы распределения
- •Биномиальное распределение (распределение Бернулли)
- •Непрерывные законы распределения
- •Равномерное распределение
- •Случайная величина (св)
- •Понятие нулевой и альтернативной гипотезы
- •Общие принципы проверки статистических гипотез
- •Непараметрический анализ выборок
- •Физические модели
- •Дискретные d схемы
- •Автомат Милли
- •Вероятностный автомат Милли
- •Вероятностный автомат Мура
- •Y и z детерминированные автоматы
- •Понятие агрегата
- •Структура агрегативной системы
Случайная величина (св)
СВ – это численная характеристика, измеряемая по ходу опыта и зависящая от случайного исхода. СВ реализуемая по ходу опыта и сама является случайной. Каждая СВ задает распределение вероятностей.
Основным свойством процессов, явлений в системах является их вероятностный характер (при данных условиях они могут произойти, реализоваться, но могут и не произойти). Для таких явлений существенную роль играет понятие вероятности.
Вероятность (Р) показывает степень возможности осуществления данного события, явления, результата. Вероятность невозможного события равна нулю, достоверного — единице (100%). Вероятность любого события лежит в пределах от 0 до 1 - в зависимости от того, насколько это событие случайно.
Если мы интересуемся событием A, то, скорее всего, можем наблюдать, фиксировать факты его появления. Потребность в понятии вероятности и ее вычисления возникнет, очевидно, только тогда, когда мы наблюдаем это событие не каждый раз, либо осознаем, что оно может произойти, а может не произойти. И в том и другом случае полезно использовать понятие частоты появления события f(A) - как отношения числа случаев его появления (благоприятных исходов) к общему числу наблюдений. Частота наступления случайного события зависит не только от степени случайности самого события, но и от числа (количества) наблюдений за этой СВ.
Существует два вида выборок СВ: зависимые и независимые. Если результаты измерения некоторого свойства у объектов первой выборки не оказывают влияния на результаты измерения этого свойства у объектов второй выборки, то такие выборки считаются независимыми. В тех случаях, когда результаты одной выборки влияют на результаты другой выборки, выборки считают зависимыми. Классический способ получения зависимых измерений – это двукратное измерение одного и того же свойства (или разных свойств) у одной и той же системы.
Событие А не зависит от события В, если вероятность события А не зависит от того произошло или нет событие В. События А и В независимы, если Р(АВ)=Р(А)Р(В). На практике независимость события устанавливается из условий опыта, интуиции исследователя и практики.
СВ бывает дискретной (мы можем пронумеровать ее возможные значения), например, выпадение игральной кости =4,6,2,1,5,3 и непрерывной (ее функция распределения F(x) – непрерывна), например, время службы лампочки.
Математическое ожидание – числовая характеристика СВ, приближенно равная среднему значению СВ:
M(x)=x1p1+x2p2+…+xnpn
Дисперсия случайной величины
D(x)=p1(x1-
)2+p2(x2-
)2+…+pn(xn-
)2
Параметрические критерии проверки статистической гипотезы.
Понятие нулевой и альтернативной гипотезы
Поскольку статистика как метод исследования имеет дело с данным, в которых интересующие исследователя закономерности искажены различными случайными факторами, большинство статистических вычислений сопровождается проверкой некоторых предположений или гипотез об источнике этих данных.
Статистическая гипотеза – это предположение о свойствах случайных величин или событий, которое мы хотим проверить по имеющимся данным.
Нулевая гипотеза – это основное проверяемое предположение, которое обычно формулируется как отсутствие различий, отсутствие влияние фактора, отсутствие эффекта, равенство нулю значений выборочных характеристик и т.п.
Например: Имеется механическое устройство, выходное звено которого совершает вращательное движение.
Гипотеза: увеличение скорости вращения выходного звена не влияет на устойчивость процессов внутри механизма.
Другое проверяемое предположение (не всегда строго противоположное или обратное первому) называется конкурирующей или альтернативной гипотезой.
Нулевая гипотеза обозначается Н0, а альтернативная как Н1.
Выдвинутая гипотеза может быть правильной или неправильной, поэтому возникает необходимость проверить ее. Так как проверку производят статистическими методами, то данная проверка называется статистической.
При проверке статистических гипотез возможны ошибки (ошибочные суждения) двух видов:
H0=TRUE
H1=FALSE
можно отвергнуть нулевую гипотезу, когда она на самом деле верна (так называемая ошибка первого рода);
H0=FALSE
H1=TRUE
можно принять нулевую гипотезу, когда она на самом деле не верна (так называемая ошибка второго рода).
Ошибка, состоящая в принятии нулевой гипотезы, когда она ложна, качественно отличается от ошибки, состоящей в отвержении гипотезы, когда она истинна. Эта разница очень существенна вследствие того, что различна значимость этих ошибок.
Допустимая вероятность ошибки первого рода (Ркр) может быть равна 5% или 1% (0.05 или 0.01).
Уровень значимости – это вероятность ошибки первого рода при принятии решения (вероятность ошибочного отклонения нулевой гипотезы).
Альтернативные гипотезы принимаются тогда и только тогда, когда опровергается нулевая гипотеза. Это бывает в случаях, когда различия, скажем, в средних арифметических экспериментальной и контрольной выборки настолько значимы (статистически достоверны), что риск ошибки отвергнуть нулевую гипотезу и принять альтернативную не превышает одного из трех принятых уровней значимости статистического вывода:
первый уровень — 5% (р=5%); где допускается риск ошибки в выводе в пяти случаях из ста теоретически возможных таких же экспериментов;
второй уровень — 1%, т. е. соответственно допускается риск ошибиться только в одном случае из ста;
третий уровень — 0,1%, т. е. допускается риск ошибиться только в одном случае из тысячи.
Последний уровень значимости предъявляет очень высокие требования к обоснованию достоверности результатов эксперимента и потому редко используется.
Статистика критерия (Т) — некоторая функция от исходных данных, по значению которой проверяется нулевая гипотеза. Чаще всего статистика критерия является числовой функцией, но она может быть и любой другой функцией, например, многомерной функцией.
Всякое правило, на основе которого отклоняется или принимается нулевая гипотеза называется критерием для проверки данной гипотезы. Статистический критерий (критерий) – это случайная величина, которая служит для проверки статистических гипотез.
Критическая область – совокупность значений критерия, при котором нулевую гипотезу отвергают. Область принятия нулевой гипотезы (область допустимых значений) – совокупность значений критерия, при котором нулевую гипотезу принимают. При справедливости нулевой гипотезы вероятность того, что статистика критерия попадает в область принятия нулевой гипотезы должна быть равна 1-Ркр.
