Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

626266

.pdf
Скачиваний:
28
Добавлен:
16.05.2015
Размер:
7.64 Mб
Скачать

При необходимости более детального просмотра увеличьте масштаб документа! www.otlichka.ru

u v uv

 

 

 

uv

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

0,

 

 

 

 

 

ctg 2x

 

 

 

 

 

 

 

 

 

 

 

 

 

 

v

 

 

 

 

 

 

 

 

 

u v u v 2

 

 

 

 

 

 

0.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ctg 2x

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Пусть v 2

 

 

v

 

0.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ctg 2x

 

 

 

 

 

 

 

dv

 

2

v

 

,

 

 

 

 

 

 

 

 

 

 

 

 

 

dx

ctg 2x

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

dv

 

2

dx

 

,

 

 

 

 

 

 

 

 

 

 

 

 

 

v

ctg 2x

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ln v ln cos 2x v cos 2x.

 

 

 

 

 

u v 0,

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

du

cos 2x 0,

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

dv

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

u C1 ,

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

z C1 cos 2x.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

y C1 cos 2xdx

 

1

C1 sin 2x C2 .

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

y

 

 

 

C sin 2x C

 

 

dx

 

C cos 2x C

 

x C

.

 

 

 

 

 

 

 

 

 

2

1

 

 

 

 

 

 

 

 

 

2

 

4 1

2

3

 

Задача 11. Найти решение задачи Коши.

y 72y3 , y(2) 1, y (2) 6.

y z( y),

Замена:

y z ( y) z( y).

z y z 72 y 3 ,yz z 72 y 3 ,

z z 72 y 3 y,

12 z 2 18 y 4 C1 ,

z 2 36 y 4 2C1.

z 2 ( y )2 ( y )2 36 y 4 2C1. 36 36 2C1 C1 0.

При необходимости более детального просмотра увеличьте масштаб документа! www.otlichka.ru

y 36 y 4 ,

y dydx 36 y 4 ,

 

dy

 

dx,

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

6 y

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

x C ,

 

 

 

 

 

 

6 y

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

y

1

 

 

.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6(x C2 )

 

 

 

 

 

 

x 2, y 1, 1

1

C

 

 

13

.

6(2 C2 )

2

 

 

 

 

 

 

 

 

 

 

 

 

6

 

 

 

 

 

 

 

 

 

 

 

 

 

 

y

 

 

1

.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6x 13

 

 

 

 

 

 

 

 

Задача 12. Найти общее решение дифференциального уравнения.

y 3y 2y 1 x2 .

yОН yОО yЧН .

3 32 2 0-характеристическое уравнение.

1 0, 2

1, 3

 

2,

 

 

 

 

 

 

y

ОО

C

C

2

C

e x

-общее решение однородного уравнения.

 

1

 

 

3

 

 

 

 

 

 

 

 

 

 

 

 

 

y ( Ax 2 Bx C)x,

 

 

 

 

 

 

ЧН

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

y

 

Ax 3 Bx 2 Cx,

 

 

 

 

 

 

ЧН

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

y 3Ax 3 Bx 2 C,

 

 

 

 

 

 

 

 

 

y 6 Ax 2B,

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

y 6 A,

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6 Ax 2 4Bx 2C 18Ax 6B 6 A 1 x 2 ,

6 Ax 2 x(18A 4B) 6 A 6B 2C 1 x 2 .

6 A 1 A

1

,

 

 

 

 

 

 

 

 

 

 

 

6

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

18A 4B 0 B

 

4

,

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

13

 

 

 

 

 

 

 

6 A 6B 2C 1 C 3.

 

 

 

 

 

 

 

 

 

1

 

 

 

2

 

 

4

 

 

 

Отсюда yЧН x

 

 

 

 

x

 

 

 

x

3 - частное решение неоднородного уравнения.

 

 

 

 

 

 

 

 

 

 

 

 

6

 

 

 

 

 

 

3

 

 

 

Общее решение

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

y

 

C C

e x

C

e 2 x

1

x3

4

x2 3x.

 

 

 

1

 

2

 

 

 

 

 

 

 

3

 

 

 

6

3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Задача 13. Найти общее решение дифференциального уравнения.

При необходимости более детального просмотра увеличьте масштаб документа! www.otlichka.ru

y 4y 5y 2y (16 12x)e x .

yОН yОО yЧН .

3 42 5 0-характеристическое уравнение.

1 2, 2,3 1,

yОО C1e2 x (C2 C3 x)ex -общее решение однородного уравнения.

yЧН ( Ax B)x 2 e x ,

yЧН ( Ax 3 Bx 2 )e x ,

y ( Ax 3 Bx 2 3Ax 2 2Bx)e x ,

y ( Ax 3 Bx 2 6 Ax 2 4Bx 6 Ax 2B)e x ,

y ( Ax 3 Bx 2 9 Ax 2 6Bx 18Ax 6B 2B)e x ,

10 Ax 3 x 2 (48A 10B) x(34B 42 A) 6 A 14B 16 12x.

42A 34B 12 A 167 ,

6 A 14B 0 B 163 .

Отсюда yЧН 161 7x3 3x2 e x - частное решение неоднородного уравнения.

Общее решение

yC1e2 x (C2 C3 x)e x 161 7x3 3x2 e x .

Задача 14. Найти общее решение дифференциального уравнения.

y y 2cos 7x 3sin 7x.

yОН yОО yЧН .

2 0 -характеристическое уравнение.

1 0, 2 1,

yОО C1 C2 e x -общее решение однородного уравнения.

yЧН Acos 7x B sin 7x, y 7 Asin 7x 7B cos 7x,

y 49 Acos 7x 49B sin 7x,

49 A cos 7x 49B sin 7x 7 Asin 7x 7B cos 7x 2 cos 7x 3sin 7x, (7B 49 A) cos 7x ( 7 A 49B) sin 7x 2 cos 7x 3sin 7x.

7B 49 A 2,

7 A 49B 3

A 17 ,350 .

B 1332450

 

 

 

 

 

 

 

 

 

 

 

 

При необходимости более детального просмотра увеличьте масштаб документа!

 

 

 

 

 

 

 

 

 

 

 

 

 

 

www.otlichka.ru

Отсюда y

 

 

17

 

cos 7x

133

sin 7x - частное решение неоднородного уравнения.

 

 

 

 

 

 

ЧН

 

 

350

 

 

 

2450

 

 

 

 

 

 

 

 

 

 

 

 

 

Общее решение

 

 

 

 

 

 

 

 

 

y

 

C

C

 

e x

 

17

cos 7x

133

sin 7x.

2

 

 

 

 

1

 

 

 

 

350

 

2450

 

 

 

 

 

 

 

 

 

 

 

Задача 15. Найти общее решение дифференциального уравнения.

y y 2sin x 6cos x 2ex .

yОН yОО yЧН .

2 0 -характеристическое уравнение.

1 0, 2 1,

yОО C1 C2 e x -общее решение однородного уравнения.

yЧН Acos x B sin x Сe x , y Asin x B cos x Ce x , y Acos x B sin x Ce x ,

Acos x B sin x Ce x Acos x B sin x Ce x 2 sin x 6 cos x 2e x , 2Ce x 2 sin x 6 cos x 2e x .

2C 2 C 1.

Отсюда yЧН e x - частное решение неоднородного уравнения.

Общее решение

yC1 C2 e x ex .

Задача 16. Найти решение задачи Коши.

y 4y 4ctg 2x, y( / 4) 3, y ( / 4) 2.

yОН yОО yЧН .

2 4 0 -характеристическое уравнение.

1 0, 2

4,

 

 

 

 

y

ОО

C C

e 4 x

-общее решение однородного уравнения.

 

 

1

 

2

 

 

 

 

 

 

 

 

 

 

 

 

0,

 

 

 

 

u y1 v y2

 

 

 

 

u y

 

v y

f (x),

 

 

 

 

1

 

2

 

 

 

 

 

 

 

 

u

1 v e 4 x 0,

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

.

 

 

 

 

 

 

 

 

 

 

 

 

u

0 v ( 4e 4 x ) 4ctg 2x

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

e 4 x

 

 

 

4e 4 x ,

1

 

 

 

0

4e

4 x

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

e 4 x

 

4e 4 x ctg 2x,

 

0

 

 

 

 

 

 

1

4ctg 2x

 

4e 4 x

 

 

 

 

 

 

 

 

 

 

 

 

 

 

10

2 0 4ctg 2x 4ctg 2x.

При необходимости более детального просмотра увеличьте масштаб документа! www.otlichka.ru

u

1

 

4e 4 x ctg 2x

 

ctg 2x,

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4e 4 x

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

v 2

 

4ctg 2x

 

e4 x ctg 2x.

 

 

 

 

 

 

 

 

 

4e 4 x

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

u ctg 2xdx

 

1

ln sin x C3 ,

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

v e4 x ctg 2xdx

1

e

4 x ctg 2x

1

e4 x ctg 2x C4 .

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4

 

 

 

 

 

y

 

 

 

1

 

ln sin x C

 

 

 

1

 

e4 x ctg 2x

1

e4 x ctg 2x C

,

 

 

 

 

3

 

 

 

 

ЧН

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

4

 

 

 

 

 

 

 

 

 

4

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

y

 

 

 

1

 

ln sin x

1

ctg 2x C

 

e 4 x C

 

 

,

 

 

 

 

 

 

 

 

 

 

 

 

 

3

4

 

 

 

 

 

 

ЧН

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

4

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3 3

1

 

 

 

 

 

 

 

 

 

2

 

 

C 3

C 4 e ,

 

 

 

 

 

 

 

 

 

y

 

 

 

 

 

 

 

 

 

ln

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

y

 

 

 

 

2

 

2

 

 

 

 

 

 

ctg

 

 

 

 

 

 

 

 

 

 

 

4e C

4

,

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

4

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2 sin

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

C

 

 

 

 

e

 

,

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4

 

8

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

25

4 ln

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

C

 

 

2

.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3

 

 

 

 

 

 

 

 

8

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Общее решение

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

25 4 ln

2

 

 

e

 

 

 

 

 

 

 

 

1

 

ln sin x

 

1

 

 

ctg 2x

2

 

 

 

 

 

y

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

.

 

 

 

2

 

4

 

 

 

 

 

8

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

При необходимости более детального просмотра увеличьте масштаб документа! www.otlichka.ru

Задача 1. Найти сумму ряда.

 

 

 

 

 

 

 

 

 

6

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3

 

 

 

 

 

 

 

 

 

.

 

 

 

 

 

 

 

 

 

 

 

 

 

n

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(n

4)(n 6)

 

 

6

 

n 4

 

 

 

 

 

 

 

 

 

 

 

 

 

n 7

 

10n 24

n 7

 

 

 

 

n 7

n

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Сумма ряда S lim Sn , где Sn - сумма n первых членов ряда.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

n

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

1

 

 

 

1

 

 

 

 

1

 

1

 

 

 

 

 

 

 

 

 

1

 

 

 

 

1

 

 

 

1

 

1

 

 

1

 

 

1

 

Sn

3 1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

...

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

n 5

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3

 

 

 

 

2 4

 

 

 

3 5

 

 

 

 

 

 

 

 

 

n

8 n 6

 

 

n 7

 

 

n 6

 

n 4

 

3 1

1

 

 

 

 

1

 

 

 

 

 

 

1

 

.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

n 5

n

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

4

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Сумма ряда

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

3

 

 

 

9

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

S 3lim

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3

 

 

 

 

 

 

 

 

.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5

 

 

n

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

n

 

 

 

 

2 n

 

 

 

 

 

 

4

 

 

 

 

2 2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Задача 2. Исследовать на сходимость ряд.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ln

 

n

2

3n

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

n2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

n 2

 

 

 

n

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

При любых значениях n выполняется неравенство

 

ln

 

 

 

n2

3n

 

 

1

.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

n

 

 

 

 

 

 

 

 

 

 

 

 

 

n2

n

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Ряд

 

является расходящимся (гармонический ряд), значит расходится и исследуемый ряд.

 

 

 

 

n

 

 

 

 

 

 

 

n 2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Задача 3. Исследовать на сходимость ряд.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1 cos

.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

n 1

 

 

 

 

 

 

 

 

n

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Сравним этот ряд с рядом

 

.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

n 1

 

n

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1 cos

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Мы можем сделать это, т.к. lim

 

 

 

 

 

 

 

n

 

 

.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1/ n2

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

n

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Интегральный признак Коши

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

dx

 

 

 

 

 

 

 

 

1

 

dx

 

 

 

 

 

 

 

 

 

 

 

1 D

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1 x2

lim

0 x2

lim

 

 

 

 

 

 

| lim

 

 

 

 

 

 

1

1.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

D

 

 

 

 

D x

1

 

 

 

 

 

D

D

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Ряд

 

 

 

 

сходится, значит сходится и исследуемый ряд.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

n 1

 

 

n

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

При необходимости более детального просмотра увеличьте масштаб документа! www.otlichka.ru

Задача 4. Исследовать на сходимость ряд.

4n

(n!)2 .

n 1

Воспользуемся признаком Даламбера

 

 

 

 

 

 

4n 1

 

lim

a

n 1

lim

 

((n 1)!)2

 

 

 

 

4n

 

n

a

n

n

 

 

 

 

 

 

 

 

(n!)2

lim

4 4n (n!)2

 

4 lim

1

 

0 1.

 

 

 

 

n 4n ((n 1)!)

2

n (n 1)

2

 

Ряд сходится.

Задача 5. Исследовать ряд на сходимость.

n 3n 2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

.

 

 

 

 

 

 

 

 

 

 

 

 

 

5

n

 

 

 

 

 

 

 

 

 

 

n 1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Радикальный признак Коши

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

n 2

3n

1

 

n 2 3

 

 

n

 

 

n

 

 

 

 

 

 

 

 

 

 

 

 

 

lim

 

a

 

lim n 3

n

 

 

 

lim n 3n

 

 

 

 

 

 

n

 

 

 

 

 

n

 

2n 1

 

n

 

2n 1

 

1 2 / n

3

1

 

lim

 

 

 

 

1.

 

 

n

2 1/ n

 

8

 

Ряд сходится.

Задача 6. Исследовать на сходимость ряд.

 

1

 

 

 

 

.

 

 

 

 

 

3n 1 ln n

 

 

n 2

 

 

 

 

 

 

 

1

 

Сравним данный ряд с рядом

.

 

3n ln n

 

 

n 2

 

Мы можем сделать это, руководствуясь предельным признаком сравнения.

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

lim

 

(3n 1) ln n

lim

 

3n ln n

1.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

n

 

1

 

 

 

 

 

 

 

n (3n 1) ln n

 

 

 

 

 

 

 

3n ln n

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Интегральный признак Коши

 

 

 

 

 

 

 

 

dx

 

 

 

 

 

 

 

 

D

 

 

 

 

1 lim ln(ln x) |

1 lim (ln(ln D) ln(ln 2)) .

 

 

 

1 lim d (ln x)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

 

 

2

3x ln x 3 D

2

ln x

 

 

3 D

2

3 D

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Ряд

 

 

 

расходится, значит расходится и исследуемый ряд.

 

 

 

 

 

3n ln n

 

 

 

n 2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

При необходимости более детального просмотра увеличьте масштаб документа! www.otlichka.ru

Задача 7. Исследовать на сходимость ряд.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

sin n

 

n .

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

( 1)n

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

n 1

n

n

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

sin n

 

 

n .

 

 

 

 

 

 

 

 

 

Рассмотрим ряд из модулей

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

n1

n

n

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

При любых значениях n выполняется неравенство

sin(n

 

 

n )

 

1

 

 

.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

n

n

n n

1

Рассмотрим ряд . n1 n n

Интегральный признак Коши

dx

 

 

 

 

 

D

dx

 

1 D

 

1

 

 

 

 

 

 

 

 

 

lim

 

 

 

 

 

 

2 lim

 

 

 

|

2 lim

 

 

 

1 2.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

x3

D

1

 

 

x3

D

 

x 1

D

 

D

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Ряд

 

 

 

сходится, значит наш знакопеременный ряд обладает абсолютной сходимостью.

 

 

 

 

 

 

 

 

 

 

 

n1

n

 

n

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Задача 8. Вычислить сумму ряда с точностью .

 

 

 

 

 

 

 

 

 

 

 

n 1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

( 1)

 

, 0,001.

 

 

 

 

 

 

 

 

 

 

3

 

 

 

 

 

 

 

 

 

 

 

 

n1

 

2n

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Сумма ряда: S Sn

Rn , где Rn

остаток ряда. По условию задачи Rn

0,001. Для

знакопеременных рядов остаток ряда по модулю меньше первого отброшенного члена.

 

Rn

 

 

 

 

 

1

 

 

 

 

0,001.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(2n 2)3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Последнее неравенство выполняется при n=5, значит достаточно оставить первые пять членов ряда

 

( 1)

n1

 

1

 

1

 

1

 

1

 

 

1

 

 

 

 

 

 

 

 

0,488.

2n 3

2

64

216

512

1000

n1

 

 

 

 

 

 

Задача 9. Найти область сходимости ряда.

1 n 1

nln 1 x . n1

Ряд будет сходится при ln(1 x) 1.Причем при ln(1 x) 1- условно имеем ln(1 x) 1. Следовательно 1 x e x e 1.

 

( 1)

n1

x e 1

 

сходится условно.

n

 

n1

 

 

Область сходимости x e 1; .

При необходимости более детального просмотра увеличьте масштаб документа! www.otlichka.ru

Задача 10. Найти область сходимости ряда.

(x 5)n3n .

n 1

Радикальный признак Коши

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

x 5

 

 

 

 

 

 

 

 

 

 

 

 

 

lim

 

 

(x 5)n

 

 

 

 

 

 

1,

 

 

 

 

 

 

 

 

 

 

 

 

 

 

lim

n

 

U n

 

 

n

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

n

 

 

 

 

 

 

n

 

 

3n

 

 

 

 

 

3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3 x 5 3 8 x 2.

 

 

 

 

 

 

 

 

 

 

Исследуем сходимость на концах интервала

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

x 8 ( 1)n расходится, т.к.

lim

 

an

 

lim1 1 0.

 

 

 

 

 

 

n 1

 

 

 

 

 

 

 

 

n

 

 

 

 

 

n

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

x 2 1n расходится, т.к. lim

 

an

 

 

 

 

 

lim1 1 0.

 

 

 

 

 

 

 

 

 

n 1

 

 

 

 

n

 

 

 

 

 

 

 

n

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Область сходимости x 8; 2 .

 

 

 

 

 

 

 

 

 

 

Задача 11. Найти область сходимости ряда.

 

1

 

n

 

 

4 x 2 .

n

n 1

 

 

 

Радикальный признак Коши

 

 

 

 

 

 

 

1

 

n

 

 

1

 

 

 

 

 

 

lim

 

4

 

 

4

 

1,

lim

n

U n

 

n

x 2

 

x 2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

n

 

 

 

 

n

 

n

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1 0 x 2.

x2

Область сходимости x ;2 .

Задача 12. Найти сумму ряда.

 

 

x

n 3

 

 

 

 

 

 

 

x

n 1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

x2

 

 

x2 S(x).

 

 

 

 

 

n(n 1)

n(n

1)

 

 

 

 

n 1

 

 

 

 

n 1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

dS

 

 

 

x

n

 

d

2

S

 

 

 

 

 

1

 

1

 

 

x

 

 

 

 

;

 

xn 1

xn

 

 

dx

 

n

dx

2

 

 

 

x

 

n 1

 

 

 

n 1

 

 

x n 1

x 1

dS

 

 

dx

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ln 1 x .

 

 

 

 

 

 

 

 

 

 

 

 

 

dx

1 x

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

x

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

S(x)

 

ln(1 x).dx

x ln

1 x

 

1 x

dx

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

x ln

1 x

 

x ln

1 x

x (1 x) ln

1 x

.

 

 

n 3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1 .

 

 

x

x3 (x2

x3 ) ln(1 x)

 

x

 

 

 

 

 

n(n 1)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

n 1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

x

 

1 ;

 

 

 

 

x

1

 

 

 

 

 

 

 

 

 

 

 

 

1

x ln(1 x) 1

 

 

dx

 

 

 

1 x

При необходимости более детального просмотра увеличьте масштаб документа! www.otlichka.ru

Задача 13. Найти сумму ряда.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(n 1)x6n x5 (n 1)x6n5

 

x5 S(x).

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

n0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

n0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

1

 

1

 

F (x)

 

 

S(x)dx

 

 

 

(n 1)x6n5 dx

 

 

x6n6

 

 

x6

x6n

x6

.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

n0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6 n0

 

 

 

 

 

 

 

 

6

 

 

n0

 

6

 

1 x6

 

S(x)

dF

 

1

 

 

 

6x5 (1 x6 ) 6x

5 x6

 

 

 

 

 

x5

 

 

 

 

.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(1 x6 )2

 

 

 

 

 

 

 

 

(1 x6 )2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

dx 6

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1 .

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(n 1)x6n

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

x

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(1 x6 )2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

n0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Задача 14. Разложить функцию в ряд Тейлора по степеням x .

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

5

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4 16 5x

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

x

 

.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

16

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Воспользуемся известным разложением.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(1 x)m 1 mx

m(m 1)

 

x2

 

m(m 1)(m 2)

x3 ...

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2!

 

 

 

 

 

 

3

 

 

 

 

 

 

 

 

 

3!

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

21

 

 

 

 

 

 

 

 

 

3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5

 

 

 

 

4

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

5

 

 

 

 

 

 

 

 

 

 

 

16

 

 

5

 

 

 

 

 

 

 

 

 

64

 

5

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

x

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

x

 

 

 

 

 

 

 

 

x

 

 

 

 

 

 

 

 

x

 

...

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

16

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4

 

16

 

 

 

 

 

 

 

2!

 

 

 

 

16

 

 

 

 

 

 

3!

 

16

 

 

 

 

 

 

 

1

 

5

x

 

 

 

 

75

 

 

 

x 2

 

 

 

 

 

 

875

x3 ...

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

64

 

 

 

 

 

 

 

8192

 

 

 

 

 

 

 

 

 

 

 

 

 

219

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

5

 

 

 

 

 

 

 

75

 

 

875

x3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4 16 5x

 

 

 

 

 

 

x

x2

...

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

7

 

 

 

14

20

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Задача 15. Вычислить интеграл с точностью до 0,001.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0,2

e

x

 

 

 

 

 

 

 

 

 

 

 

0,12

 

 

 

 

 

 

 

 

 

 

 

 

 

 

x

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

dx

 

 

 

 

 

1

 

 

 

e

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

x

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

x

dx.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

 

 

x

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

e x

1 x

x2

 

 

x3

 

...

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2!

 

 

 

 

 

 

 

3!

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0,2

1

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

x

2

 

 

 

 

 

 

 

 

x

3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0,2

 

 

 

 

 

 

x

 

 

 

x

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

x

 

 

2!

 

3!

 

 

 

... dx

 

1

 

 

 

 

 

3!

 

... dx .

 

 

 

 

 

 

0

 

x

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

 

 

2!

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

x 2

 

 

 

 

 

 

 

 

 

x3

 

 

 

 

 

 

 

 

 

 

0,2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

|

 

 

0,2 0,01 0 0,190.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

x

 

 

2 2!

 

3 3!

 

...

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]