
- •1.Матрицы и операции над ними.
- •2.Определители и их свойства.
- •3.Ранг матрицы.
- •4.Обратная матрица
- •5.Решение систем линейных алгебраических уравнений по формуле крамера.
- •6.Решение систем линейных алгебраических уравнений матричным методом.
- •8.Линейные операции над векторами.
- •10.Скалярное произведение вектора.
- •11. Векторное произведение векторов
- •12. Смешанное произведение векторов.
- •13. Понятие о линейном векторном пространстве
- •14. Базис. Собственные числа. Собственные вектора.
- •15. Простейшие задачи на плоскости (деление отрезка в заданном соотношении, расстояние между двумя точками).
- •16. Прямая на плоскости. Расстояние от точки до прямой. Угол между прямыми.
- •19. Прямая в пространстве, канонические уравнения
- •20. Элементы теории множеств
- •1. Логические символы
- •2. Операции над множествами
- •21. Функция, область определения, способы задания. Сложная и обратная функции
- •22. Предел функции
- •23. Основные теоремы о пределах
- •24. Замечательные пределы
- •1. Пусть . Каждое значение X заключено между двумя положительными целыми числами:, где— это целая часть X.
- •2. Пусть . Сделаем подстановку, тогда
- •25. Бесконечно малые и бесконечно большие функции и их свойства
- •28. Производная и дифференциал функции одной переменной.
- •30. Правила вычисления производных (диффиринцирования).
- •31. Таблица производных.
- •32.Производная сложных и обратных функций.
- •Геометрический смысл дифференциала
- •36. (Правило Лопиталя).
- •39. Понятие экстремума, основные теоремы.
- •Необходимое условие экстремума
- •Первое достаточное условие экстремума
- •Второе достаточное условие экстремума
- •40. Выпуклость и вогнутость, точки перегиба, асимптоты.
- •Теоремы о выпуклости функции и точках перегиба
- •41. Исследование функции и построение графика.
- •42. Наибольшее и наименьшее значение функции, непрерывной на отрезке.
- •44. Неопределенный интеграл, свойства.
- •45. Таблица интегралов
- •46. Основные методы интегрирования.
- •Свойства
- •49. Замена переменной, интегрирование по частям.
44. Неопределенный интеграл, свойства.
Множество всех первообразных некоторой функции f(x) называется неопределенным интегралом функцииf(x) и обозначается как
Таким образом, если F - некоторая частная первообразная, то справедливо выражение
где С - произвольная постоянная.
Свойства неопределенного интеграла
В приведенных ниже формулах f и g - функции переменной x, F - первообразная функции f, а, k, C - постоянные величины.
45. Таблица интегралов
46. Основные методы интегрирования.
Метод интегрирования подстановкой заключается во введении новой переменной интегрирования (т. е. подстановки). При этом заданный интеграл приводится к новому интегралу, который является табличным или к нему сводащимся (в случае «удачной» подстановки). Общих методов подбора подстановок не существует. Умение правильно oпpeделить подстановку пpиобpетaeтcя практикой.
Пусть
тpебyетcя вычислить интеграл Сделаем
подстановку
х =φ(t), где φ(t) - функция, имеющая непрерывную производную.
Тогда dx=φ'(t) dt и на основании свойства инвариантности формулы интегрирования неопpeделeннoгo интеграла получаем формулу интегриpoвaния подcтaнoвкoй
(30.1)
Формула (30.1) также называется формулой замены переменных в неопределeннoм интеграле. Пoслe нахождения интеграла правой части этого равенства следует перейти от новой переменной интегрирования t назад к переменной х.
Иногда целесообразно подбирать подстановку в виде t= φ(х), тогда
Другими
слoвaми, формулу(30.1)
можно применять справа налево.
Метод интегрирования по частям
Пусть u=u(х) и ν=v(х) - функции, имеющие непрерывные производные. Тогда d(uv)=u•dv+v•du.
Интегрируя это равенство, получим
Полученная
формула называется формулой
интегрирования по частям.
Она дает возможность свести вычисление
интеграла к
вычислению интеграла
,
который может оказаться существенно
более простым, чем исходный.
47.Определенный интеграл, геометрический смысл, свойства. Определённый интеграл — аддитивный монотонный нормированный функционал, заданный на множестве пар, первая компонента которых есть интегрируемаяфункция или функционал, а вторая — область в множестве задания этой функции (функционала).
Геометрический смысл
Определённый интеграл как площадь фигуры
Определённый
интеграл численно
равен площади фигуры, ограниченной
осью абсцисс, прямыми
и
и
графиком функции
.
Свойства
Если
функция интегрируема
по Риману на
,
то она ограничена на нем.
48. Формула Ньютона-Лейбница - даёт соотношение между операциями взятия определенного интеграла и вычисления первообразной. Формула Ньютона-Лейбница - основная формула интегрального исчисления.
Данная формула верна для любой функции f(x), непрерывной на отрезке [а, b], F - первообразная для f(x). Таким образом, для вычисления определенного интеграла нужно найти какую-либо первообразную F функции f(x) , вычислить ее значения в точках a и b и найти разность F(b) – F(a).