
- •Е. А. Михайлов, н. А. Мухин,
- •150023. Ярославль, Московский пр., 88.
- •150000. Ярославль, ул. Советская, 14а.
- •Введение
- •1. Химические и физические свойства природных вод
- •1.1 Основные физические свойства воды, снега и льда
- •1.1.1 Плотность и удельный объем
- •1.1.2 Удельная теплота парообразования воды и плавления снега и льда
- •1.1.3 Теплоемкость и теплопроводность
- •1.1.4 Молекулярная вязкость. Поверхностное натяжение
- •1.2. Химические свойства воды
- •1.3. Характеристика природных вод
- •1.4 Классификации состава природных вод
- •2. Гидрология рек
- •2.1 Гидрографическая сеть. Речные системы. Главные реки и их притоки.
- •2.2 Исток и устье реки. Основные виды устьев. Устьевые области
- •2.3 Скорости течения воды и распределение их по живому сечению
- •2.4 Средняя скорость в живом сечении. Формула Шези
- •2.5 Поперечные циркуляции
- •2.6 Вихревые движения
- •2.7 Основные закономерности структуры гидрографической сети. Густота речной сети.
- •2.8 Склоновая эрозия
- •2.9 Речной бассейн. Поверхностный и подземный водосборы. Водоразделы. Деление и смешение вод.
- •2.10 Морфометрические характеристики речного бассейна
- •2.11 Речные долины. Элементы долины и поймы.
- •2.12 Характерные речные образования
- •3. Гидрология озер
- •3.1 Происхождение, типы и морфология озерных котловин
- •3.2 Формирование озерного ложа под влиянием волнения и отложения наносов
- •3.3 Зарастание озер
- •3.4 Географическое положение озера. Морфометрические характеристики
- •3.5 Уровневый режим озер
- •3.6 Динамические явления в озерах
- •3.7 Сейши
- •3.8 Изменение температуры воды в озерах в течение года
- •3.9 Ледовые явления
- •3.10 Формирование химического режима
- •3.11 Биологические процессы
- •3.12 Озерные отложения
- •4. Гидрология водохранилищ
- •4.1 Основные особенности гидрологического режима водохранилищ
- •4.2 Режим уровней
- •4.3 Условия водообмена
- •4.4 Формирование берегов
- •4.5 Ледовый режим
- •5. Гидрология ледников.
- •5.1 Фирн. Ледниковый лед, его свойства.
- •5.2 Движение ледников
- •5.3 Таяние ледников
- •5.4 Особенности режима рек с ледниковым питанием
- •6. Гидрология болот
- •6.1 Образование болот и их типы
- •6.2 Болотная гидрографическая сеть
- •6.3 Гидрологический режим болот
- •6.4 Движение воды в торфяном грунте и на болотных массивах
- •6.5 Колебания уровня грунтовых вод на болотных массивах
- •6.6 Сток с болот
- •6.7 Испарение с болотных массивов
- •7. Гидрология подземных вод
- •7.1 Теории и гипотезы происхождения подземных вод
- •7.2 Классификация подземных вод по условиям их происхождения
- •7.3 Виды воды в порах горных пород и почв
- •7.4 Виды воды в порах
- •7.5 Условия залегания подземных вод в земной коре
- •7.6 Вода в почве
- •7.7 Грунтовые и межпластовые безнапорные воды
- •7.8 Напорные воды
- •7.9 Движение подземных вод
- •7.10 Подземные источники
- •7.11 Режим грунтовых вод. Зависимость колебаний уровня от климата
- •7.12 Взаимосвязь речных и подземных вод
- •7.13 Минеральные воды
- •8. Гидрология океанов и морей
- •8.1 Формы морского шельфа
- •8.2 Формы движение морских вод
- •9. Практические задания к главе 1
- •10. Практические задания к главе 2
- •11. Практические задания к главе 3
- •12. Практические задания к главе 4
- •13. Практические задания к главе 5
- •14. Практические задания к главе 6
- •15. Практические задания к главе 7
- •16. Практические задания к главе 8
- •Заключение
- •Список использованных источников
1.1.2 Удельная теплота парообразования воды и плавления снега и льда
Удельной теплотой парообразования L (кал/г) называется количество тепла, необходимое для перевода 1 г воды из жидкого состояния в парообразное без изменения температуры при нормальном атмосферном давлении.
Теплота, затрачиваемая на перевод жидкости в пар, состоит из двух частей
L = L1 + L2,
где
L1 - тепло, расходуемое на преодоление межмолекулярных сил сцепления, т. е. на повышение внутренней энергии, и называемое внутренней теплотой испарения;
L2 - тепло, расходуемое на увеличение объема, занимаемого единицей массы вещества, т. е. на работу против внешнего давления.
С повышением температуры удельная теплота парообразования уменьшается. Эта зависимость может быть охарактеризована следующей эмпирической формулой:
L = 597 - 0,57t,
где
t - температура испаряющей поверхности, L - в кал/г.
Количество тепла Qис, затрачиваемого на испарение столбика воды высотой E см с площадью основания 1 см2 при плотности воды = 1, определяется по формуле
Qис = EL = Е (597 - 0,570 t),
где
Qис - в калориях.
Удельной теплотой плавления Lпл называется количество тепла, поглощаемого при переходе 1 г снега или льда в жидкую воду той же температуры. Это же количество тепла выделяется при замерзании 1 г воды.
Количество теплоты, поглощаемое при плавлении или выделяемое при кристаллизации столбиком чистого льда высотой h см и площадью 1 см2, определяется выражением
Qл = лhLпл,
где
Qл - в калориях.
Интересно отметить, что удельная теплота испарения воды и удельная теплота плавления льда значительно больше, чем многих других жидкостей. Эта аномалия объясняется, так же как и аномалия плотности, особенностями строения воды. При переходе жидкой воды в пар и льда в жидкую воду энергия затрачивается не только на преодоление сил взаимного притяжения молекул, но и на разрушение агрегатов двойных и тройных молекул.
1.1.3 Теплоемкость и теплопроводность
Количество тепла, необходимое для нагревания 1 г воды на 1°С, называется удельной теплоемкостью Cp. В гидрологии теплоемкость обычно выражается в кал/(г*град).
Вода характеризуется наибольшей теплоемкостью по сравнению с другими жидкими и твердыми веществами, за исключением водорода и аммиака.
Благодаря большой теплоемкости воды суточные и сезонные изменения ее температуры оказываются менее значительными, чем изменение температуры воздуха, удельная теплоемкость которого в 4 раза меньше, чем теплоемкость воды.
Так же как и плотность, теплоемкость воды изменяется с температурой аномально: при 30°С она наименьшая - 0,9975 кал/(г*град) при 15 и 70°С равна 1,000, при 3,6 и 100°С возрастает до 1,0057; теплоемкость водяного пара при 100°С и давлении 760 мм равна 0,462, теплоемкость льда при 0°С - 0,485, а при 10°С - 0,444 кал/(г*град).
Передача тепла путем молекулярной теплопроводности состоит в том, что повышенные колебания молекул в более нагретых слоях постепенно передаются молекулам смежных слоев и таким образом энергия теплового движения постепенно передается от слоя к слою. В результате возникает поток тепла от более нагретых слоев к слоям с более низкой температурой.
Характеристика молекулярной теплопередачи - коэффициент теплопроводности воды () в кал/(см*с*град) при 0°С равен 0,001358 кал/(см*с*град). С повышением температуры он увеличивается и при температуре 20° С равен 0,00143 кал/(см×с×град).
Коэффициент теплопроводности чистого, лишенного пузырьков воздуха льда равен 0,0054 кал/(см×с×град). С понижением температуры теплопроводность льда несколько уменьшается.
Теплопроводность снега зависит в значительной мере от его плотности.
Зависимость коэффициента теплопроводности снега с от его плотности может быть выражена в следующей форме:
с = 0,0067с2,
Где
с - плотность снега;
с - в кал/(см×с×град).