- •Е. А. Михайлов, н. А. Мухин,
- •150023. Ярославль, Московский пр., 88.
- •150000. Ярославль, ул. Советская, 14а.
- •Введение
- •1. Химические и физические свойства природных вод
- •1.1 Основные физические свойства воды, снега и льда
- •1.1.1 Плотность и удельный объем
- •1.1.2 Удельная теплота парообразования воды и плавления снега и льда
- •1.1.3 Теплоемкость и теплопроводность
- •1.1.4 Молекулярная вязкость. Поверхностное натяжение
- •1.2. Химические свойства воды
- •1.3. Характеристика природных вод
- •1.4 Классификации состава природных вод
- •2. Гидрология рек
- •2.1 Гидрографическая сеть. Речные системы. Главные реки и их притоки.
- •2.2 Исток и устье реки. Основные виды устьев. Устьевые области
- •2.3 Скорости течения воды и распределение их по живому сечению
- •2.4 Средняя скорость в живом сечении. Формула Шези
- •2.5 Поперечные циркуляции
- •2.6 Вихревые движения
- •2.7 Основные закономерности структуры гидрографической сети. Густота речной сети.
- •2.8 Склоновая эрозия
- •2.9 Речной бассейн. Поверхностный и подземный водосборы. Водоразделы. Деление и смешение вод.
- •2.10 Морфометрические характеристики речного бассейна
- •2.11 Речные долины. Элементы долины и поймы.
- •2.12 Характерные речные образования
- •3. Гидрология озер
- •3.1 Происхождение, типы и морфология озерных котловин
- •3.2 Формирование озерного ложа под влиянием волнения и отложения наносов
- •3.3 Зарастание озер
- •3.4 Географическое положение озера. Морфометрические характеристики
- •3.5 Уровневый режим озер
- •3.6 Динамические явления в озерах
- •3.7 Сейши
- •3.8 Изменение температуры воды в озерах в течение года
- •3.9 Ледовые явления
- •3.10 Формирование химического режима
- •3.11 Биологические процессы
- •3.12 Озерные отложения
- •4. Гидрология водохранилищ
- •4.1 Основные особенности гидрологического режима водохранилищ
- •4.2 Режим уровней
- •4.3 Условия водообмена
- •4.4 Формирование берегов
- •4.5 Ледовый режим
- •5. Гидрология ледников.
- •5.1 Фирн. Ледниковый лед, его свойства.
- •5.2 Движение ледников
- •5.3 Таяние ледников
- •5.4 Особенности режима рек с ледниковым питанием
- •6. Гидрология болот
- •6.1 Образование болот и их типы
- •6.2 Болотная гидрографическая сеть
- •6.3 Гидрологический режим болот
- •6.4 Движение воды в торфяном грунте и на болотных массивах
- •6.5 Колебания уровня грунтовых вод на болотных массивах
- •6.6 Сток с болот
- •6.7 Испарение с болотных массивов
- •7. Гидрология подземных вод
- •7.1 Теории и гипотезы происхождения подземных вод
- •7.2 Классификация подземных вод по условиям их происхождения
- •7.3 Виды воды в порах горных пород и почв
- •7.4 Виды воды в порах
- •7.5 Условия залегания подземных вод в земной коре
- •7.6 Вода в почве
- •7.7 Грунтовые и межпластовые безнапорные воды
- •7.8 Напорные воды
- •7.9 Движение подземных вод
- •7.10 Подземные источники
- •7.11 Режим грунтовых вод. Зависимость колебаний уровня от климата
- •7.12 Взаимосвязь речных и подземных вод
- •7.13 Минеральные воды
- •8. Гидрология океанов и морей
- •8.1 Формы морского шельфа
- •8.2 Формы движение морских вод
- •9. Практические задания к главе 1
- •10. Практические задания к главе 2
- •11. Практические задания к главе 3
- •12. Практические задания к главе 4
- •13. Практические задания к главе 5
- •14. Практические задания к главе 6
- •15. Практические задания к главе 7
- •16. Практические задания к главе 8
- •Заключение
- •Список использованных источников
2.6 Вихревые движения
Помимо поперечных циркуляций, в потоке наблюдаются вихревые движения с вертикальной осью вращения (рис. 9). Одни из них подвижны и неустойчивы, другие стационарны и отличаются большими поперечными размерами. Чаще они возникают в местах слияния потоков, за крутыми выступами берегов, при обтекании некоторых подводных препятствий и т. д. Условия формирования стационарных вихрей пока не исследованы.
Вероятно, образованию устойчивого локализованного вихря способствует значительная глубина потока и существование восходящего течения воды. Эти вихри в потоке, известные под названием водоворотов, напоминают воздушные вихри — смерчи.

Рис. 9 Схема вихрей с вертикальными осями (по К. В. Гришанину).
Поперечные циркуляции, вихревые движения играют большую роль в транспортировании наносов и формировании речных русел.
2.7 Основные закономерности структуры гидрографической сети. Густота речной сети.
В зависимости от характера грунтов бассейна, рельефа местности, растительного покрова и количества выпадающих осадков русловая сеть обычно имеет различную разветвленность. В условиях легко проницаемых грунтов большая часть выпадающих осадков достигает речного русла подземным стоком, вследствие чего в этом случае русловая сеть менее развита. В горных районах, где осадков обычно больше, чем на равнине, а грунты становятся менее проницаемыми, густота русловой сети больше, чем в равнинных.
В лесных районах, вследствие более благоприятных условий для фильтрации воды, наблюдается несколько меньшая густота русловой сети, чем в безлесных.
Следует учитывать, что в изолированном виде трудно установить влияние какого-либо одного из указанных факторов; в большинстве случаев они совместно определяют условия развития русловой сети, хотя нередко какой-либо из них оказывает наибольшее воздействие. Это иногда приводит к противоречивым оценкам роли отдельных факторов в формировании речной сети.
Так, например, в гидрологической литературе встречаются утверждения, что повышенное развитие речной сети наблюдается на заболоченных территориях, в озерных котловинах и в других местах, где грунтовые воды находятся близко к земной поверхности, в то же время отмечается, что рельеф местности сравнительно мало влияет на плотность русловой сети.
Густота русловой сети обычно определяется как отношение длины всех водотоков данной площади, выраженной в километрах, к величине этой площади, выраженной в квадратных километрах, т. е.
![]()
Из определения понятия густоты русловой сети ясно, что числовые значения густоты русловой сети будут сравнимы между собой для отдельных районов, если они получены по данным карт одних и тех же масштабов и съемкам одной и той же степени полноты. Действительно, на картах мелких масштабов очень малые водотоки не могут быть показаны и, следовательно, общая длина водотоков окажется меньше, чем в том случае, когда определение длин производилось по картам более крупных масштабов.
Чем крупнее масштаб, тем точнее определяется густота русловой сети.
Наиболее часто определение густоты русловой сети производится следующим образом: рассматриваемая территория разбивается на сеть равновеликих квадратов и измеряется суммарная длина водотоков, находящихся в пределах каждого квадрата.
Разделив найденное значение на площадь квадрата, получим густоту речной сети в пределах этого квадрата.
Иногда степень развитости русловой сети характеризуют расчлененностью рельефа, определяя величину площадей, ограниченных двумя соседними реками и линией, проводимой между их истоками.
Густота русловой сети характеризует и средние расстояния между смежными водотоками. Справедливость этого вытекает из следующих рассуждений.
Представим себе, что какая-то часть территории равномерно покрыта водотоками (в том числе и пересыхающими), причем на всей площади F число таких водотоков п и длина каждого L. Тогда можно считать, что к каждому водотоку длиной L будет примыкать площадка f=F/n.
Для густоты русловой сети d имеем
![]()
а отсюда
![]()
Но отношение площади примыкающего к водотоку участка к длине участка равно ширине участка, т. е. расстоянию от данного водотока до ближайшего.
Для случая неравномерного распределения русловой сети величина l/d, очевидно, есть среднее расстояние между водотоками, а величина l/2d характеризует среднюю ширину склонов, с которых вода поступает в водотоки.
Учитывая, что тальвег водотока обычно начинается не от водораздела, а лишь на некотором расстоянии от него, среднюю ширину склона иногда рекомендуют вычислять по соотношению b = l/2,25d
