Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Скачиваний:
65
Добавлен:
15.05.2015
Размер:
1.7 Mб
Скачать

Тема 3. Системы эконометрических уравнений

1. Предварительно ознакомиться с теоретическим материалом:

Л1 [Гл. 4], Л2 [Гл. 3], Л3 [Гл. 9].

2. Примеры с решениями.

Пример 1. Изучается модель вида:

Данная система из трех уравнений содержит три зависимые, эндогенные (, ,) и четыре независимые, экзогенные (, , ,) переменные.

В структурной форме (СФМ) для нахождения параметров модели и (называемых также структурными коэффициентами модели), простой МНК неприменим.

Обычно для определения структурных коэффициентов модели СФМ преобразуется в приведенную форму модели (ПФМ).

Параметры приведенной формой модели могут быть оценены по методу наименьших квадратов. По этим параметрам затем можно рассчитать структурные коэффициенты модели и . Для существования однозначного соответствия между параметрами структурной и приведенной формами необходимо выполнение условия идентификации.

Структурные формы модели могут быть

идентифицируемые;

неидентифицируемые;

сверхиндетифицируемые.

Для того чтобы СФМ была идентифицируема, необходимо чтобы каждое уравнение системы было идентифицируемо. В этом случае число параметров СФМ равно числу параметров приведенной формы.

Если хотя бы одно уравнение СФМ неидентифицируемо, то вся модель считается неидентифицируемой. В этом случае число коэффициентов приведенной формы модели меньше, чем число коэффициентов СФМ.

Модель сверхидентифицируема, если число приведенных коэффициентов больше числа структурных коэффициентов. В этом случае можно получить два и более значений одного структурного коэффициента на основе коэффициентов приведенной формы модели. В сверхидентифицируемой модели хотя бы одно уравнение сверхидентифицируемо, а остальные уравнения идентифицируемы.

Если обозначить число эндогенных переменных в i-том уравнении СФМ через Н, а число предопределенных переменных, которые содержатся в системе, но не входят в данное уравнение через D, то условие идентифицируемости модели может быть записано в виде следующего счетного правила:

если D+1 < H – уравнение неидентифицируемо;

если D+1 = H – уравнение идентифицируемо;

если D+1 > H – уравнение сверхидентифицируемо.

Счетное правило является необходимым, но не достаточным условием идентификации. Кроме этого правила для идентифицируемости уравнения должно выполняться дополнительное условие.

Отметим в системе эндогенные и экзогенные переменные, отсутствующие в рассматриваемом уравнении, но присутствующие в системе. Из коэффициентов при этих переменных в других уравнениях составим матрицу. При этом, если переменная стоит в левой части уравнения, то коэффициент надо брать с обратным знаком. Если определитель полученной матрицы не равен нулю, а ранг не меньше, чем количество эндогенных переменных в системе без одного, то достаточное условие индетификации для данного уравнения выполнено.

Проверим каждое уравнение системы на выполнение неоходимого и достаточного условия идентификации.

В первом уравнении три эндогенных переменных: , ,(H=3). В нем отсутствуют экзогенные переменные и (D=2). Необходимое условие идентификации D+1=H выполнено.

Для проверки на достаточное условие составим матрицу из коэффициентов при переменных и (см. таблицу 1). В первом столбце таблицы показано, что коэффициенты при экзогенных переменных и взяты из уравнений 2 и 3 системы. Во втором уравнении эти переменные присутствуют и коэффициенты при них равны и, соответственно. В третьем уравнении эти переменные отсутствуют, т.е. коэффициенты при них равны нулю. Так как вторая строка матрицы состоит из нулей, определитель матрицы равен нулю. Значит, достаточное условие не выполнено, и первое уравнение нельзя считать идентифицируемым.

Таблица 1

Матрица, составленная из коэффициентов при переменных и.

Уравнения, из которых взяты коэффициенты при переменных

Переменные

2

3

0

0

Во втором уравнении две эндогенные переменные: и (H=2). В нем отсутствует экзогенная переменная (D=1). Необходимое условие идентификации D+1=H выполнено.

Для проверки на достаточное условие составим матрицу из коэффициентов при переменных и , которые отсутствуют во втором уравнении (см. таблицу 2).

Таблица 2

Матрица, составленная из коэффициентов при переменных и .

Уравнения, из которых взяты коэффициенты при переменных

Переменные

1

3

–1

Определитель представленной в таблице 2 матрицы не равен нулю, а ранг матрицы равен 2. Значит, достаточное условие выполнено, и второе уравнение идентифицируемо.

В третьем уравнении три эндогенные переменные: , ,(H=3). В нем отсутствует экзогенные переменные и (D=2). Необходимое условие идентификации D+1=H выполнено.

Для проверки на достаточное условие составим матрицу из коэффициентов при переменных и, которые отсутствуют в третьем уравнении (см. таблицу 3). Согласно таблице определитель матрицы равен нулю (первая строка состоит из нулей). Значит, достаточное условие не выполнено, и третье уравнение нельзя считать идентифицируемым.

Таблица 3

Матрица, составленная из коэффициентов при переменных и.

Уравнения, из которых взяты коэффициенты при переменных

Переменные

1

0

0

2

При оценивании коэффициентов структурной модели используется ряд методов. Рассмотрим косвенный метод наименьших квадратов (КМНК), который применяется в случае точно идентифицируемой структурной модели.

Пример 2. Рассмотрим КМНК на примере следующей идентифицируемой модели, содержащей две эндогенные и две экзогенные переменные:

Для построения модели мы располагаем информацией, представленной в таблице 4.

Таблица 4.

Фактические данные для построения модели

n

у1

у2

х1

х2

1

33,0

37,1

3

11

2

45,9

49,3

7

16

3

42,2

41,6

7

9

4

51,4

45,9

10

9

5

49,0

37,4

10

1

6

49,3

52,3

8

16

Сумма

270,8

263,6

45

62

Средн. знач.

45,133

43,930

7,500

10,333

Структурную модель преобразуем в приведенную форму модели.

где u1 и u2 – случайные ошибки.

Для каждого уравнения приведенной формы при расчете коэффициентов  можно применить МНК.

Для упрощения расчетов можно работать с отклонениями от средних уровней и(и– средние значения). Преобразованные таким образом данные таблицы 4 сведены в таблицу 5. Здесь же показаны промежуточные расчеты, необходимые для определения коэффициентов.

Для нахождения коэффициентов первого приведенного уравнения можно использовать следующую систему нормальных уравнений:

Таблица 5

Преобразованные данные для построения приведенной формы модели

n

Y1

Y2

X1

X2

Y1X1

X12

X1X2

Y1X2

Y2X1

Y2X2

X22

1

‑12,133

‑6,784

‑4,500

0,667

54,599

20,250

‑3,002

‑8,093

30,528

‑4,525

0,445

2

0,767

5,329

‑0,500

5,667

‑0,383

0,250

‑2,834

4,347

‑2,664

30,198

32,115

3

‑2,933

‑2,308

‑0,500

‑1,333

1,467

0,250

0,667

3,910

1,154

3,077

1,777

4

6,267

1,969

2,500

‑1,333

15,668

6,250

‑3,333

‑8,354

4,922

‑2,625

1,777

5

3,867

‑6,541

2,500

‑9,333

9,667

6,250

‑23,333

‑36,091

‑16,353

61,048

87,105

6

4,167

8,337

0,500

5,667

2,084

0,250

2,834

23,614

4,168

47,244

32,115

Сумма

0,002

0,001

0,000

0,002

83,102

33,500

‑29,001

‑20,667

21,755

134,417

155,334

Подставляя рассчитанные в таблице 5 значения сумм, получим

Решение этих уравнений дает значения 11 = 2,822 и 12 = 0,394. Первое уравнение приведенной формы модели примет вид

.

Для нахождения коэффициентов 2k второго приведенного уравнения можно использовать следующую систему нормальных уравнений:

Подставляя рассчитанные в таблице 5 значения сумм, получим

Решение этих уравнений дает значения 21 = 1,668 и 22 = 1,177. Второе уравнение приведенной формы модели примет вид

.

Для перехода от приведенной формы к структурной форме модели найдем из второго уравнения приведенной формы модели

.

Подставим это выражение в первое уравнение приведенной модели, найдем структурное уравнение

.

Таким образом, b12 = 0,335; a11 = 2,264.

Найдем из первого уравнения приведенной формы модели

.

Подставим это выражение во второе уравнение приведенной модели, найдем структурное уравнение

.

Таким образом, b21 = 0,591; a22 = 0,944.

Свободные члены структурной формы находим из уравнений

,

.

Окончательный вид структурной модели

Пример 3. Изучается модель вида:

Требуется:

1. Оценить следующую структурную модель на идентификацию:

2. Исходя из приведенной формы модели уравнений

найти структурные коэффициенты модели.

Решение.

1. Модель имеет три эндогенные (у1, у2, у3) и три экзогенные (х1, х2, х3) переменные.

Проверим каждое уравнение системы на необходимое (Н) и достаточное (Д) условия идентификации.

Первое уравнение.

Н: эндогенных переменных – 2 (у1, у3), отсутствующих экзогенных – 1 (x2).

Выполняется необходимое равенство: 2=1+1, следовательно, уравнение точно идентифицируемо.

Д: в первом уравнении отсутствуют у2 и x2. Построим матрицу из коэффициентов при них в других уравнениях системы:

Уравнение

Отсутствующие

переменные

y2

X2

Второе

–1

a22

Третье

b32

0

DetA = l0  b32a22  0.

Определитель матрицы не равен 0, ранг матрицы равен 2; следовательно, выполняется достаточное условие идентификации, и первое уравнение точно идентифицируемо.

Второе уравнение.

Н: эндогенных переменных – 3 (y1, y2, y3), отсутствующих экзогенных – 2 (x1, x3).

Выполняется необходимое равенство: 3=2+1, следовательно, уравнение точно идентифицируемо.

Д: во втором уравнении отсутствуют x1 и x3. Построим матрицу из коэффициентов при них в других уравнениях системы:

Уравнение

Отсутствующие

переменные

x1

x3

Первое

a11

a13

Третье

a31

a33

DetA = a11a33 a31a13 0.

Определитель матрицы не равен 0, ранг матрицы равен 2, следовательно, выполняется достаточное условие идентификации, и второе уравнение точно идентифицируемо.

Третье уравнение.

Н: эндогенных переменных – 2 (y2, y3), отсутствующих экзогенных – 1 (x2).

Выполняется необходимое равенство: 2=1+1, следовательно, уравнение точно идентифицируемо.

Д: в третьем уравнении отсутствуют y1 и x2. Построим матрицу из коэффициентов при них в других уравнениях системы:

Уравнение

Отсутствующие

переменные

y1

x2

Первое

–1

0

Второе

b21

a22

DetA = la22 b210  0.

Определитель матрицы не равен 0, ранг матрицы равен 2, следовательно, выполняется достаточное условие идентификации, и третье уравнение точно идентифицируемо.

Следовательно, исследуемая система точно идентифицируема и может быть решена косвенным методом наименьших квадратов.

2. Вычислим структурные коэффициенты модели:

1) из третьего уравнения приведенной формы выразим х2 (так как его нет в первом уравнении структурной формы):

.

Данное выражение содержит переменные y3, x1 и x3, которые нужны для первого уравнения структурной формы модели (СФМ). Подставим полученное выражение x2 в первое уравнение приведенной формы модели (ПФМ):

–первое уравнение СФМ:

2) во втором уравнении СФМ нет переменных x1 и x3. Структурные параметры второго уравнения СФМ можно будет определить в два этапа:

Первый этап: выразим x1 в данном случае из первого или третьего уравнения ПФМ. Например, из первого уравнения:

.

Подстановка данного выражения во второе уравнение ПФМ не решило бы задачу до конца, так как в выражении присутствует x3, которого нет в СФМ.

Выразим x3 из третьего уравнения ПФМ:

.

Подставим его в выражение x1:

;

.

Второй этап: аналогично, чтобы выразить x3 через искомые y1, y3, и x2, заменим в выражении x3 значение x1 на полученное из первого уравнения ПФМ:

Следовательно,

.

Подставим полученные x1 и x3 во второе уравнение ПФМ:

–второе уравнение СФМ.

3) из второго уравнения ПФМ выразим x2, так как его нет в третьем уравнении СФМ:

.

Подставим полученное выражение в третье уравнение ПФМ:

–третье уравнение СФМ.

Таким образом, СФМ примет вид