
- •Имитационное моделирование
- •1.1. Модели процессов и систем
- •1.2. Моделирование для поддержки принятия управленческих решений
- •1.3. Уровни абстракции и адекватность модели
- •1.4. Моделирование как наука и искусство
- •2.1. Статические и динамические модели
- •2.2. Непрерывные, дискретные и гибридные модели
- •2.3. Детерминированные и стохастические модели
- •2.4. Аналитические и имитационные модели
- •3.1. Что такое имитационное моделирование
Имитационное моделирование
Моделирование
Моделирование является общепризнанным средством познания действительности. Этот процесс состоит из двух больших этапов: разработки модели и анализа разработанной модели. Моделирование позволяет исследовать суть сложных процессов и явлений с помощью экспериментов не с реальной системой, а с ее моделью. Известно, что для принятия разумного решения по организации работы системы не обязательно знание всех характеристик системы, всегда достаточен анализ ее упрошенного, приближенного представления.
В области создания новых систем моделирование является средством исследования важных характеристик будущей системы на самых ранних стадиях ее разработки. С помощью моделирования возможно исследовать узкие места будущей системы, оценить производительность, стоимость, пропускную способность — все главные ее характеристики еще до того, как система будет создана. С помощью моделей разрабатываются оптимальные операционные планы и расписания функционирования существующих сложных систем. В организационных системах имитационное моделирование становится основным инструментом сравнения различных вариантов управляющих решений и поиска наиболее эффективного из них как для решений внутри цеха, организации, фирмы, так и на макроэкономическом уровне.
Модели сложных систем строятся в виде программ, выполняемых на компьютере. Компьютерное моделирование существует почти 50 лет, оно возникло с появлением первых компьютеров. С тех пор сложились две перекрывающиеся области компьютерного моделирования, которые можно охарактеризовать как математическое моделирование и имитационное моделирование.
Математическое моделирование связано, в основном, с разработкой математических моделей физических явлений, с созданием и обоснованием численных методов. Существует академическая трактовка моделирования как области вычислительной математики, которая является традиционной для активности прикладных математиков. В России сложилась сильная школа в этой области: НИИ Математического Моделирования РАН — головная организация, Научный Совет РАН по проблеме "Математическое моделирование", издается журнал "Математическое моделирование" (www.imamod.ru).
Имитационное моделирование — это разработка и выполнение на компьютере программной системы, отражающей поведение и структуру моделируемого объекта. Компьютерный эксперимент с моделью состоит в выполнении на компьютере данной программы с разными значениями параметров (исходных данных) и анализе результатов этих выполнений.
Проблемы разработки имитационных моделей
Имитационное моделирование — очень обширная область. Можно по-разному подходить к классификации решаемых в ней задач. В соответствии с одной из классификаций эта область насчитывает в настоящее время четыре основных направления:
моделирование динамических систем,
дискретно-событийное моделирование,
системная динамика
агентное моделирование.
В каждом из этих направлений развиваются свои инструментальные средства, упрощающие разработку моделей и их анализ. Данные направления (кроме агентного моделирования) базируются на концепциях и парадигмах, которые появились и были зафиксированы в инструментальных пакетах моделирования несколько десятилетий назад и с тех пор не менялись.
Моделирование динамических систем
Направлено на исследование сложных объектов, поведение которых описывается системами алгебро-дифференциальных уравнений. Инженерным подходом к моделированию таких объектов 40 лет назад была сборка блок-схем из решающих блоков аналоговых компьютеров: интеграторов, усилителей и сумматоров, токи и напряжения в которых представляли переменные и параметры моделируемой системы. Этот подход и сейчас является основным в моделировании динамических систем, только решающие блоки являются не аппаратными, а программными. Он реализован, например, в инструментальной среде Simulink.
Дискретно-событийное моделирование
В нем рассматриваются системы с дискретными событиями. Для создания имитационной модели такой системы моделируемая система приводится к потоку заявок, которые обрабатываются активными приборами. Например, для моделирования процесса обслуживания физических лиц в банке физические лица представляются в виде потока заявок, а работники банка, обслуживающие их представляются активными приборами. Идеология дискретно-событийного моделирования была сформулирована более 40 лет назад и реализована в среде моделирования GPSS, которая с некоторыми модификациями до сих пор используется для обучения имитационному моделированию.
Системная динамика.
Системная динамика – это направление в изучении сложных систем, исследующее ихповедениево времени и в зависимости от структуры элементов системы и взаимодействия между ними. В том числе: причинно-следственных связей, петельобратных связей, задержек реакции, влияния среды и других. Основоположником системной динамики является американский ученый Джей Форрестер. Дж. Форрестер применил принципы обратной связи, существующей в системах автоматического регулирования, для демонстрации того, что динамика функционирования сложных систем, в первую очередь производственных и социальных, существенно зависит от структуры связей и временных задержек в принятии решений и действиях, которые имеются в системе. В 1958 году он предложил использовать для компьютерного моделирования сложных систем потоковые диаграммы, отражающих причинно-следственные связи в сложной системе,
В настоящее время системная динамика превратилась в зрелую науку. Общество системной динамики (The- System Dynamics Society, www.systemdynamics.org) является официальным форумом системных аналитиков во всем мире. Ежеквартально выходит журнал System Dynamics Review, ежегодно созываются несколько международных конференций по этим проблемам. Системная динамика как методология и инструмент исследования сложных экономических и социальных процессов изучается во многих бизнес-школах по всему миру..
Агентное моделирование
Агентное моделирование (agent-based model (ABM)) — метод имитационного моделирования, исследующий поведение децентрализованныхагентови то, как такое поведение определяет поведение всей системы в целом. В отличие отсистемной динамикианалитик определяет поведение агентов на индивидуальном уровне, а глобальное поведение возникает как результат деятельности множества агентов (моделирование «снизу вверх»).
Агентное моделирование включает в себя элементы теории игр, сложных систем, мультиагентных систем и эволюционного программирования, методы Монте-Карло, использует случайные числа.
Существует множество определений понятия агента. Общим во всех этих определениях является то, что агент — это некоторая сущность, которая обладает активностью, автономным поведением, может принимать решения в соответствии с некоторым набором правил, может взаимодействовать с окружением и другими агентами, а также может изменяться (эволюционировать). Многоагентные (или просто агентные) модели используются для исследования децентрализованных систем, динамика функционирования которых определяется не глобальными правилами и законами, а наоборот, эти глобальные правила и законы являются результатом индивидуальной активности членов группы. Цель агентных моделей — получить представление об этих глобальных правилах, общем поведении системы, исходя из предположений об индивидуальном, частном поведении ее отдельных активных объектов и взаимодействии этих объектов в системе.
При создании агентной модели логика поведения агентов и их взаимодействие не всегда могут быть выражены чисто графическими средствами, здесь часто приходится использовать программный код. Для агентного моделирования используются пакеты Swarm и RePast. Примером агентной модели является модель развития города.
В современном мире информационных технологий десятилетие сравнимо с веком прогресса в традиционных технологиях, Но в имитационном моделировании почти без изменения применяются идеи и решения 60-х годов прошлого века. На базе этих идей еще в прошлом веке были разработаны программные средства, которые с незначительными изменениями применяются до сих пор. Разработка имитационных модели с использованием этих программ является весьма сложной и трудоемкой задачей, доступной только высококвалифицированным специалистам и требующей больших временных затрат. Один из разработчиков имитационных моделей Роберт. Шеннон писал: «разработка даже простых моделей требует 5—6 человеко-месяцев и стоит порядка 30 ООО долларов, а сложных — на два порядка больше». Иными словами, трудоемкость построения сложной имитационной модели традиционными методами оценивается в сотню человеко-лет.
Имитационное моделирование традиционными методами реально используется узким кругом профессионалов, которые должны иметь не только глубокие знания в той прикладной области, для которой строится модель, но также глубокие знания в программировании, теории вероятностей и статистике.
Кроме того, проблемы анализа современных реальных систем часто требуют разработки моделей, не укладывающихся в рамки одной единственной парадигмы моделирования. Например, при моделировании системы с преобладающим дискретным типом событий может потребоваться введение переменных, описывающих непрерывные характеристики среды. В парадигму блочной модели потоков данных совершенно не вписываются дискретно-событийные системы, В системно-динамической модели часто возникает необходимость учета дискретных событий или моделирования индивидуальных свойств объектов из разнородных групп. Поэтому использование указанных выше программных средств не отвечает современным требованиям,.
AnyLogic — инструмент имитационного моделирования нового поколения
AnyLogic - программное обеспечениедляимитационного моделированиянового поколения, разработанороссийскойкомпанией The AnyLogic Company (бывшая «Экс Джей Текнолоджис»,-англ.XJ Technologies). Этот инструмент существенно упрощает разработку моделей и их анализ.
Пакет AnyLogic создан с использованием последних достижений информационных технологий: объектно-ориентированный подход, элементы стандарта UML,языка программирования Java, и т.д. Первая версия пакета (Anylogic 4.0) была выпущена в 2000г. К настоящему времени выпущена версия Anylogic 6.9.
Пакет поддерживает все известные методы имитационного моделирования:
Моделирование динамических систем
системная динамика;
дискретно-событийное моделирование;
агентное моделирование.
Рост производительности компьютеров и достижения в информационных технологиях, использованные в AnyLogic, сделали возможным реализацию агентных моделей, содержащих десятки и даже сотни тысяч активных агентов
С помощью AnyLogic стало возможным разрабатывать модели в следующих областях:
производство;
логистика и цепочки поставок;
рынок и конкуренция;
бизнес-процессы и сфера обслуживания;
здравоохранение и фармацевтика;
управление активами и проектами;
телекоммуникации и информационные системы;
социальные и экологические системы;
пешеходная динамика;
оборона.
Модели. Наука и искусство моделирования
Моделирование состоит из трех этапов:
анализ реального явления и построение его упрошенной модели,
анализ построенной модели формальными средствами (например, с помощью компьютера),
интерпретация результатов, полученных на модели, в терминах реального явления.
Первый и третий этапы не могут быть формализованы, их выполнение требует интуиции, творческого воображения и понимания сути изучаемого явления, т. е. качеств, присущих работникам искусства.