
- •Содержание
- •Вопрос 19. Способы соединения обмоток 3-х фазного трансформатора. 39
- •Вопрос 21. Понятие группы соединения обмоток однофазного трансформатора. 42
- •Вопрос 22. Понятие группы соединения обмоток трехфазного трансформатора 44
- •Вопрос 23. Опыты холостого хода и короткого замыкания трансформатора. Кпд трансформатора. 46
- •Вопрос 1 Конструкция сердечников трансформатора.
- •Вопрос 2 Конструкция обмоток трансформатора.
- •Вопрос 3 Конструкция бака трансформатора.
- •Вопрос 4 Охлаждение трансформаторов.
- •Вопрос 5 Принцип действия трансформатора.
- •Вопрос 6 Холостой ход трансформатора.
- •Вопрос 7 . Эдс обмоток трансформатора.
- •Вопрос 8 . Векторная диаграмма холостого хода идеального трансформатора.
- •Вопрос 9 Векторная диаграмма холостого хода реального трансформатора.
- •Вопрос 10 Уравнение намагничивающих токов трансформатора.
- •11 Режим нагрузки реального трансформатора. Основные уравнения.
- •12 Векторная диаграмма нагруженного реального трансформатора.
- •13 Автоматическое саморегулирование трансформатора.
- •14 Внешняя характеристика трансформатора.
- •15 Конструкция магнитной системы 3-х фазного трансформатора.
- •16. Приведенный трансформатор. Пересчет параметров вторичной обмотки к числу витков первичной.
- •17. Т- образная схема замещения трансформатора.
- •18. Расчет параметров схемы замещения трансформатора по его паспортным данным.
- •Вопрос 19. Способы соединения обмоток 3-х фазного трансформатора.
- •20. Составляющие прямой обратной и нулевой последовательности эдс обмоток трансформатора.
- •Вопрос 21. Понятие группы соединения обмоток однофазного трансформатора.
- •Вопрос 22. Понятие группы соединения обмоток трехфазного трансформатора
- •Вопрос 23. Опыты холостого хода и короткого замыкания трансформатора. Кпд трансформатора.
- •24 Условия параллельной работы трансформаторов:
- •№25 Анализ влияния несовпадения коэффициентов трансформации на уравнительный ток при включении
- •Вопрос №26. Влияние несовпадения группы соединения трансформаторов на уравнительный ток при параллельном включении.
- •27 Параллельная работа трансформаторов
- •28. Автотрансформатор
- •29 Специальные типы трансформаторов
- •30 Обозначение и паспортные данные
- •31. Устройство трёхфазной асинхронной машины
- •32 Конструкция ад с короткозамкнутым ротором
- •33 Конструкция ад с фазным ротором
- •34 Вращающееся магнитное поле
- •35. Принцип действия асинхронной машины.
- •36. Скольжение асинхронного двигателя.
- •37. Регулирование частоты вращения асинхронных двигателей
- •38. Механическая характеристика двигателя.
- •39.Основные точки механической характеристики: критическое скольжение и частота, максимальный момент, пусковой момент, номинальный момент.
- •40.Конструкция обмоток статора. Однослойные и двухслойные петлевые обмотки.
- •41. Обмотки статора. Однослойные и двухслойные волновые обмотки
- •42. Схемы замещения асинхронной машины. Т-образные и г-образные схемы замещения
- •43. Приведение обмотки ротора к обмотке статора.
- •44. Механический момент и механическая мощность ад
- •45. Схемы пуска асинхронного двигателя с короткозамкнутым ротором.
- •46.Пуск двигателя с фазным ротором.
- •47. Регулирование скорости вращения асинхронного двигателя с фазным ротором.
- •48.Включение ад в однофазную цепь.
- •49.Вращающееся магнитное поле двухфазного тока.
- •50.Конденсаторные асинхронные двигатели.
- •51. Асинхронные исполнительные двигатели
- •52. Оператор поворота вектора
- •53.Разложение 3-х фазного не синусоидального тока на вектора прямой, обратной и нулевой последовательности.
- •54.Метод симметричных составляющих. Применение метода для анализа несимметричных режимов. Однофазное кз. Метод симметричных составляющих.
- •55.Потери мощности и кпд асинхронного двигателя.
- •56.0. Двухклеточные и глубокопазные ад
- •56.1. Глубокопазные двигатели
- •56.2. Двухклеточные двигатели
- •57.Рабочие характеристики.
- •58. Динамическое торможение асинхронного двигателя.
- •59. Торможение асинхронного двигателя методом противовключения.
- •60.Магнитное поле и мдс катушек и катушечных групп обмоток статора
Вопрос 3 Конструкция бака трансформатора.
Бак масляного трансформатора представляет собой резервуар для масла, внутри которого устанавливается активная часть трасформатора. Бак является также опорной конструкцией, на которой устанавливаются все основные узлы трансформатора (навесная система охлаждения, вводы совместно с трансформаторами тока, устройства регулирования напряжения, расширитель и т.д.). Для увеличения поверхности охлаждения трансформатора баки изготовляют ребристыми, вваривают в них трубы или снабжают съемными радиаторами (только у трансформаторов мощностью до 25 кВ-А стенки бака гладкие). Радиаторы присоединяют к стенкам бака патрубками со специальными радиаторными кранами. У верхнего торца бака к его стенкам приваривают раму из угловой или полосовой стали, к которой крепят крышку на прокладках из маслоупорной резины. В нижней части бака всех типов трансформаторов имеется кран для взятия пробы и слива масла, а в его днище (в трансформаторах мощностью выше 100 кВ-А) — пробка для спуска осадков после слива масла через кран. Второй кран устанавливают на крышке бака, через который заливают в него масло. Оба крана служат одновременно для присоединения к ним маслоочистительных аппаратов. К дну баков трансформаторов массой выше 800 кг приваривают тележку с поворотными катками, конструкция крепления которых позволяет изменять направление передвижения трансформаторов с поперечного на продольное. Для подъема трансформатора на баке имеется четыре кольца-рыма. Активная часть поднимается за скобы в верхних консолях магнитопровода. На крышке бака размещены вводы, расширитель и защитные устройства (выхлопная предохранительная труба, реле давления, газовое реле, пробивной предохранитель). К стенкам бака приваривают подъемные крюки, прикрепляют манометрический сигнализатор (у трансформаторов мощностью свыше 1000 кВ- А) и устанавливают фильтры.
а—гладкостенный бак, б — трубчатый бак; 1 — рама, 2 — кожух для защиты вводов, 3 — корпус бака, 4 — днище, 5 — пластина, 6 — крюк для подъема трансформатора, 7 — циркуляционные трубки, 8 — маслосливной кран, 9 — тележка.
Вопрос 4 Охлаждение трансформаторов.
Естественное воздушное охлаждение трансформаторов осуществляется посредством естественной конвекции воздуха и частичного лучеиспускания в воздухе. Такие трансформаторы получили название «сухих». Условно принято обозначать естественное охлаждение при открытом исполнении С, при защитном исполнении — СЗ, при герметичном исполнении СГ, с принудительной циркуляцией воздуха (дутьем) — СД. Допустимое превышение температуры обмотки сухого трансформатора над температурой окружающей среды зависит от класса нагревостойкости изоляции и согласно ГОСТ 11677—85 должно быть не больше
60 °С для класса А,
75 °С — для класса Е,
80 °С — для класса В,
100 °С — для класса F,
125 °С — для класса Н
Данная система охлаждения малоэффективна, поэтому применяется для трансформаторов мощностью до 1600 кВ А при напряжении до 15 кВ.
Естественное масляное охлаждение (М) выполняется для трансформаторов мощностью до 16000 кВА. В таких трансформаторах тепло, выделенное в обмотках и магнитопроводе, передается маслу, циркулирующему по баку и радиаторам, а затем — окружающему воздуху. При номинальной нагрузке трансформатора в соответствии с Правилами технической эксплуатации (ПТЭ) температура масла в верхних, наиболее нагретых слоях не должна превышать +95°С. Для лучшей отдачи тепла в окружающую среду бак трансформатора снабжают ребрами, охлаждающими трубами или радиаторами в зависимости от мощности.
Масляное охлаждение с дутьем и естественной циркуляцией масла (Д) применяется для более мощных трансформаторов. В этом случае в навесных охладителях из радиаторных труб помещают вентиляторы. Вентилятор засасывает воздух снизу и обдувает нагретую верхнюю часть труб. Пуск и останов вентиляторов осуществляется автоматически в зависимости от нагрузки и температуры нагрева масла. Трансформаторы с таким охлаждением могут работать при полностью отключенном дутье, если нагрузка не превышает 100% от номинальной, а температура верхних слоев масла не более 55 °С, а также независимо от нагрузки при отрицательных температурах окружающего воздуха и температуре масла не выше 45 °С (ПТЭ). Максимально допустимая температура масла в верхних слоях при работе трансформатора с номинальной нагрузкой 95 °С.
Форсированный обдув радиаторных труб улучшает условия охлаждения масла, а следовательно, обмоток и магнитопровода трансформатора, что позволяет изготовлять такие трансформаторы мощностью до 80 000 кВА.
Масляное охлаждение с дутьем и принудительной циркуляцией масла через воздушные охладители (ДЦ) применяется для трансформаторов мощностью 63000 кВА и выше. Охладители состоят из тонких ребристых трубок, обдуваемых снаружи вентилятором. Электронасосы, встроенные в маслопроводы, создают непрерывную принудительную циркуляцию масла через охладители. Благодаря высокой скорости циркуляции масла, большой поверхности охлаждения и интенсивному дутью охладители обладают большой теплоотдачей и компактностью. Такая система охлаждения позволяет значительно уменьшить габаритные размеры трансформаторов. Охладители могут устанавливаться вместе с трансформатором на одном фундаменте или на отдельных фундаментах рядом с баком трансформатора.
Масляно-водяное охлаждение трансформаторов с принудительной циркуляцией масла (Ц)принципиально устроено так же, как охлаждение ДЦ, но в отличие от последнего охладители в этой системе состоят из трубок, по которым циркулирует вода, а между трубками движется масло. Температура масла на входе в маслоохладитель не должна превышать 70 °С. Чтобы предотвратить попадание воды в масляную систему трансформатора, давление масла в маслоохладителях в этом случае должно превышать давление циркулирующей в них воды не менее чем на 0,02 МПа (2 Н/см2). Эта система охлаждения эффективна, но имеет довольно сложное конструктивное исполнение и поэтому применяется для мощных трансформаторов (160 MBА и более).