Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Эконометрика / частные_коэффициенты_корр

.doc
Скачиваний:
46
Добавлен:
15.05.2015
Размер:
81.92 Кб
Скачать

10.7. Частная корреляция.

Как было показано выше, ранжирование факторов, участвующих в множественной линейной регрессии, может быть проведено через стандартизованные коэффициенты регрессии (-коэффициенты). Эта же цель может быть достигнута с помощью частных коэффициентов корреляции — для линейных связей. При нелинейной взаимосвязи исследуемых признаков эту функцию выполняют частные индексы детерминации. Кроме того, частные показатели корреляции широко используются при решении проблемы отбора факторов: целесообразность включения того или иного фактора в модель доказывается величиной показателя частной корреляции.

Частные коэффициенты (или индексы) корреляции характеризуют тесноту связи между результатом и соответствующим фактором при устранении влияния других факторов, включенных в уравнение регрессии.

Показатели частной корреляции представляют собой отношение сокращения остаточной дисперсии за счет дополнительного включения в анализ нового фактора к остаточной дисперсии, имевшей место до введения его в модель.

Пример. Предположим, что зависимость объема продукции у от затрат труда х1, характеризуется уравнением

Подставив в это уравнение фактические значения x1, найдем теоретические величины объема продукции yteor и соответствующую величину остаточной дисперсии S2:

Включив в уравнение регрессии дополнительный фактор х2 -техническую оснащенность производства, получим уравнение регрессии вида

Для этого уравнения остаточная дисперсия, естественно, меньше. Предположим, что S2 yx1x2 = 3,7, а S2 yx1 == 6. Чем большее число факторов включено в модель, тем меньше величина остаточной дисперсии.

Сокращение остаточной дисперсии за счет дополнительного включения фактора х2 составит:

Чем больше доля этого сокращения в остаточной вариации до введения дополнительного фактора, т. е. в Syx12, тем теснее связь между у и х2 при постоянном действии фактора х1. Корень квадратный из этой величины и есть индекс частной корреляции, показывающий в «чистом» виде тесноту связи у с х2.

Следовательно, чистое влияние фактора х2 на результат у можно определить как

Аналогично определяется и чистое влияние на результат y фактора х1:

Если предположить, что S2 y x2 = 5, то частные показатели корреляции для уравнения уteor(x1,x2) = 20,2 + 2,8•х1 + 0,2•х2 составят

Сравнивая полученные результаты, видим, что более сильное воздействие на объем продукции оказывает техническая оснащенность предприятий.

Если выразить остаточную дисперсию через показатель детерминации S2 остат = 2у*(1 - r2), то формула коэффициента частной корреляции примет вид:

Соответственно

Рассмотренные показатели частной корреляции принято называть коэффициентами (индексами) частной корреляции первого порядка, ибо они фиксируют тесноту связи двух переменных при закреплении (элиминировании влияния) одного фактора.

Если рассматривается регрессия с числом факторов р, то возможны частные коэффициенты корреляции не только первого, но и второго, третьего, ..., (р-1) порядка, т. е. влияние фактора х1 можно оценить при разных условиях независимости действия других факторов:

rух1•х2 – при постоянном действии фактора х2;

rух1•х2 x3 постоянном действии факторов х2 и х3;

rух1•х2…xp - при неизменном действии всех остальных (p-1) факторов, включенных в уравнение регрессии.

Сопоставление коэффициентов частной корреляции разного порядка по мере увеличения числа включаемых факторов показывает процесс «очищения» зависимости результативного признака с исследуемым фактором.

Например, при изучении зависимости себестоимости добычи угля от объема добычи парный коэффициент корреляции оказался равным (-0,75), характеризуя довольно тесную обратную связь признаков. Частный коэффициент корреляции этой зависимости при постоянном влиянии уровня производительности труда составил (-0,58) и демонстрирует хотя и достаточную, но уже заметно менее тесную связь себестоимости и объема добычи. Закрепив на постоянном уровне также и размер основных фондов, теснота связи рассматриваемых признаков оказывается еще более низкой, т. е. (-0,52).

Хотя частная корреляция разных порядков и может представлять аналитический интерес, в практических исследованиях предпочтение отдают показателям частной корреляции самого высокого порядка, ибо именно эти показатели являются дополнением к уравнению множественной регрессии.

В общем виде при наличии р факторов для уравнения

коэффициент частной корреляции, измеряющий влияние на у фактора хi, при неизменном уровне других факторов, можно определить по формуле

где

- множественный коэффициент детерминации всего комплекса р факторов с результатом y;

- тот же показатель детерминации, но без введения в модель фактора xi.

При i = 1 формула коэффициента частной корреляции примет вид:

Данный коэффициент частной корреляции позволяет измерить тесноту связи между у и xi при неизменном уровне всех других факторов, включенных в уравнение регрессии.

Порядок частного коэффициента корреляции определяется количеством факторов, влияние которых исключается. Например, ryx1x2 - коэффициент частной корреляции первого порядка.

Соответственно коэффициенты парной корреляции называются коэффициентами нулевого порядка. Коэффициенты частной корреляции более высоких порядков можно определить через коэффициенты частной корреляции более низких порядков по рекуррентной формуле

При двух факторах и i = 1 данная формула примет вид:

Соответственно при i = 2 и двух факторах частный коэффициент корреляции у с фактором х2 можно определить по формуле

Для уравнения регрессии с тремя факторами частные коэффициенты корреляции второго порядка определяются на основе частных коэффициентов корреляции первого порядка. Так, по уравнению

возможно исчисление трех частных коэффициентов корреляции второго порядка:

каждый из которых определяется по рекуррентной формуле. Например, при i = 1 имеем формулу для расчета ryx1x2x3, а именно

Пример. Предположим, изучается зависимость тиража газеты y от ожидаемого дохода от распродажи газеты х1, количества персонала редакции х2, рейтинга газеты среди других газет, распространяемых в регионе х3. В этом случае матрица парных коэффициентов корреляции составила:

Исходя из этих данных, найдем частные коэффициенты корреляции первого и второго порядка.

Приведем частные коэффициенты корреляции первого порядка зависимости у от x1 и х2.

т. е. при закреплении фактора х2 на постоянном уровне корреляция у и х1 оказывается более низкой (0,585 против 0,69);

т. е. при закреплении фактора х1 на постоянном уровне влияние фактора х2 на у оказывается менее сильным (0,409 против 0,58);

т. е. при закреплении фактора х3 на постоянном уровне влияние факторах, на у несколько снизилось по сравнению с парной корреляцией (0,574 против 0,69) ввиду некоторой связи факторов х1 и х3;

т. е. при закреплении фактора х3 на постоянном уровне влияние на у фактора х2 оказалось несколько менее сильным (0,465 против 0,58);

т. е. корреляция фактора х3 с у снизилась при фиксированном влиянии на у фактора х1 (0,55 и 0,327);

т. е. при закреплении фактора х2 на постоянном уровне влияние фактора х3 на у оказалось менее значительным (0,420 и 0,55).

Приведем частные коэффициенты корреляции второго порядка.

При фиксированном влиянии факторов х2 и х3 корреляция у с х1 оказалась еще меньше, чем при частной корреляции первого порядка (при закреплении фактора х2): 0,69; 0,585 и 0,505

Корреляция фактора х2 с у снизилась до 0,409 при элиминировании фактора х1 и до 0,362 при элиминировании двух факторов — х1 и х3.

Корреляция у с х3 снизилась с 0,55 в парной регрессии до 0,327 при закреплении на постоянном уровне фактора х, и до 0,261 при одновременном закреплении на постоянном уровне факторов X, и х2. Частная корреляция второго порядка зависимо­сти у с факторами х,, х2 и х3 оказалась значительно более низкой - 0,505; 0,362 и 0,261 против 0,69; 0,58 и 0,55 для парной регрессии.

Рассчитанные по рекуррентной формуле частные коэффициенты корреляции изменяются в пределах от -1 до +1, а по формулам через множественные коэффициенты детерминации — от 0 до 1. Сравнение их друг с другом позволяет ранжировать факторы по тесноте их связи с результатом. Частные коэффициенты корреляции, подтверждая ранжировку факторов по их воздействию на результат, на основе стандартизованных коэффициентов регрессии (-коэффициентов) в отличие от последних дают конкретную меру тесноты связи каждого фактора с результатом y в чистом виде.

Если из стандартизованного уравнения регрессии

следует, что 1 >2 >3 , т.е. по силе влияния на результат порядок факторов таков: х1 , х2, х3, то этот же порядок факторов определяется и по соотношению частных коэффициентов корреляции, ryx1•x2x3 > r yx2•x1x3 > r yx3•x1x2.

Согласованность частной корреляции и стандартизованных коэффициентов регрессии наиболее отчетливо видна из сопоставления их формул при двухфакторном анализе. Для уравнения

9

Соседние файлы в папке Эконометрика