
2.6. Вывод
Итак, на основании выше изложенного можно сделать следующие основные выводы:
1. Причиной молниевого разряда является возникновение сильного электрического поля, которое, по достижении некоторого критического значения, вызывает лавинообразный процесс ионизации молекул воздуха и образование проводящего канала. Через этот проводящий канал протекает электрический ток, вызывающий нагрев и, как следствие, свечение (молния) и взрывообразные звуковые эффекты (гром).
2. Сильные электрические поля возникают в результате разделения разноименных электрических зарядов в пространстве.
3. Системой, обеспечивающей разделение зарядов, являются осадкообразующие конвективные облака, в которых присутствую восходящие воздушные потоки и тяжелые взвешенные частицы (осадки). Осадки преимущественно заряжаются отрицательно и, оседая, переносят отрицательный заряд вниз, а легкие (атмосферные ионы, облачные капли и кристаллы) заряжаются положительно и вместе со своим зарядом переносятся восходящими потоками вверх. В дальнейшем в нижней части облака разделение заряда меняет знак, и образуется небольшая область положительного заряда внизу. Таким образом, в облаке формируется трехполюсная зарядовая структура <плюс-минус-плюс>.
4. Роль каждого механизма в образовании грозы определяется конкретной ситуацией.
Молния и гром как неотъемлемые части грозы
Исходя из выше подробно описанной физической подоплеки электричества в атмосфере, можно смело сказать, что молния - природный разряд больших скоплений электрического заряда (электронов) в нижних слоях атмосферы, своеобразный искровой разряд статического электричества, аккумулированного в грозовых облаках. Энергия искрового разряда - молнии и возникающие при этом токи очень велики и представляют большую опасность для человека, животных, строений. Молния сопровождается звуковым импульсом – громом. Сочетание молнии и грома называют грозой.
Гроза - это исключительно красивое природное явление. Как правило, после грозы улучшается погода, воздух становится прозрачен, свеж и чист, насыщен ионами, образующимися при разрядах молнии.
Несмотря на это нужно помнить, что гроза в определенных условиях может представлять большую опасность для человека. Каждый человек должен знать природу грозового явления, правила поведения во время грозы и методы защиты от молнии.
Грозы можно разделить на местные, фронтальные, ночные, в горах. Наиболее часто человек сталкивается с местными или тепловыми грозами. Эти грозы возникают только в жаркое время при большой влажности атмосферного воздуха. Как правило, возникают летом в полуденное или послеполуденное время (12-16 часов). Водяной пар в восходящем потоке теплого воздуха на высоте конденсируется, при этом выделяется много тепла и восходящие потоки воздуха подогреваются. По сравнению с окружающим восходящий воздух теплее, он увеличивается в объеме, пока не превратится в грозовое облако. В больших по размеру грозовых облаках постоянно витают кристаллики льда и капельки воды. В результате их дробления и трения между собой и о воздух образуются положительные и отрицательные заряды, под действием которых возникает сильное электростатическое поле (напряженность электростатического поля может достигать 100 000 в/м). И разница потенциалов между отдельными частями облака, облаками или облаком и землей достигает громадных величин. При достижении критической напряженности электрического воздуха возникает лавинообразная ионизация воздуха - искровой разряд молнии.
Фронтальная гроза возникает, когда массы холодного воздуха проникают в район, где преобладает теплая погода. Холодный воздух вытесняет теплый, при этом последний поднимается на высоту 5-7 км. Теплые слои воздуха вторгаются внутрь вихрей различной направленности, образуется шквал, сильное трение между слоями воздуха, что способствует накоплению электрических зарядов. Длина фронтальной грозы может достигать 100 км. В отличие от местных гроз после фронтальных обычно холодает.
Ночная гроза связана с охлаждением земли ночью и образованием вихревых токов восходящего воздуха. Гроза в горах объясняется разницей в солнечной радиации, которой подвергаются южные и северные склоны гор. Ночные и горные грозы несильные и непродолжительные.
Грозовая активность различна по районам нашей планеты. Мировые очаги гроз: остров Ява - 220, экваториальная Африка - 150, южная Мексика - 142, панама - 132, центральная Бразилия - 106 грозовых дней в году. Россия: Мурманск - 5, Архангельск - 10, с-Петербург - 15, Москва - 20 грозовых дней в году. (см. рис. 4)
Рис.4. Глобальная частота ударов молний
Как правило, чем южнее (для северного полушария земли) и севернее (для южного полушария земли), тем выше грозовая активность. Грозы в Арктике и Антарктике очень редки. На земле в год происходит 16 миллионов гроз. На каждый квадратный километр поверхности земли приходится 2-3 удара молнии в год.
Виды молний
По видам молнии делятся на линейные, жемчужные и шаровые. Жемчужные и шаровые молнии довольно редкое явление.
Распространенная линейная молния, с которой многократно встречается любой человек, имеет вид разветвляющейся линии. Величина силы тока в канале линейной молнии составляет в среднем 60 - 170 кА, зарегистрирована молния с током 290 кА. Средняя молния несет энергию 250 квт/час (900 мДж). Энергия, в основном, реализуется в виде световой, тепловой и звуковой энергий.
Перед и во время грозы изредка в темное время на вершинах высоких заостренных объектов (макушках деревьев, мачтах, вершинах острых скал в горах, крестах церквей, молниеотводах, иногда в горах у людей на голове, поднятой руке или у животных) можно наблюдать свечение, получившее название «огни святого эльма». Это название дано в древности моряками, наблюдавшими свечение на вершинах мачт парусников. Свечение возникает из-за того, что на высоких заостренных предметах напряженность электрического поля, создаваемого статическим электрическим зарядом облака, особенно высока; в результате начинается ионизация воздуха, возникает тлеющий разряд и появляются красноватые языки свечения, временами укорачивающиеся и опять удлиняющиеся. Не следует пытаться тушить эти огни, т.к. горения нет. При высокой напряженности электрического поля может появиться пучок светящихся нитей - коронный разряд, который сопровождается шипением. Линейная молния также изредка может возникнуть и при отсутствии грозовых облаков. Не случайно возникла поговорка - «гром среди ясного неба».
Жемчужная молния очень редкое и красивое явление. Появляется сразу после линейной молнии и исчезает постепенно. Преимущественно разряд Жемчужной молнии следует по пути линейной. Молния имеет вид светящихся шаров, расположенных на расстоянии 7-12 м друг от друга, напоминая собой жемчуг, нанизанный на нитку. Жемчужная молния может сопровождаться значительными звуковыми эффектами.
Шаровая молния также довольно редка. На тысячу обычных линейных молний приходится 2-3 шаровых. Шаровая молния, как правило, появляется во время грозы, чаще к ее концу, реже после грозы. Возникает, но очень редко, при полном отсутствии грозовых явлений. Может иметь форму шара, эллипсоида, груши, диска и даже цепи соединенных шаров. Цвет молнии — красный, желтый, оранжево-красный, окружена светящейся пеленой. Иногда молния ослепительно белая с очень резкими очертаниями. Цвет определяется содержанием различных веществ в воздухе. Форма и цвет молнии могут меняться во время разряда. измерить параметры шаровой молнии и смоделировать ее в лабораторных условиях не удалось. По всей видимости, многие наблюдаемые неопознанные летающие объекты (НЛО) по своей природе аналогичны или близки шаровой молнии.
Внутриоблачные молнии включают в себя обычно только лидерные стадии; их длина колеблется от 1 до 150 км. Доля внутриоблачных молний растет по мере смещения к экватору, меняясь от 0,5 в умеренных широтах до 0,9 вэкваториальной полосе. Прохождение молнии сопровождается изменениями электрических и магнитных полей и радиоизлучением, так называемыми атмосфериками.
Вероятность поражения молнией наземного объекта растет по мере увеличения его высоты и с увеличением электропроводности почвы на поверхности или на некоторой глубине (на этих факторах основано действие громоотвода). Если в облаке существует электрическое поле, достаточное для поддержания разряда, но недостаточное для его возникновения, роль инициатора молнии может выполнить длинный металлический трос или самолёт — особенно, если он сильно электрически заряжен. Таким образом иногда «провоцируются» молнии в слоисто-дождевых и мощных кучевых облаках.
Молнии в верхних слоях атмосферы
В 1989 году был обнаружен особый вид молний — эльфы, молнии в верхней атмосфере. В 1995 году был открыт другой вид молний в верхней атмосфере — джеты, еще через несколько лет – спрайты.
Эльфы (англ. Elves; Emissions of Light and Very Low Frequency Perturbations from Electromagnetic Pulse Sources) представляют собой огромные, но слабосветящиеся вспышки-конусы диаметром около 400 км, которые появляются непосредственно из верхней части грозового облака. Высота эльфов может достигать 100 км, длительность вспышек — до 5 мс (в среднем 3 мс).
Джеты представляют собой трубки-конусы синего цвета. Высота джетов может достигать 40-70 км (нижняя граница ионосферы), живут джеты относительно дольше эльфов.
Спрайты трудно различимы, но они появляются почти в любую грозу на высоте от 55 до 130 километров (высота образования «обычных» молний - не более 16 километров). Это некое подобие молнии, бьющей из облака вверх. Впервые это явление было зафиксировано в 1989 году случайно. Сейчас о физической природе спрайтов известно крайне мало.
Заключение
В заключение нельзя не сказать несколько слов о взаимосвязи атмосферного электричества с формированием состава атмосферы и климата планеты. Первые подтверждения гипотезы Ж.фон Лебега (высказанной еще в XIX в.) о том, что молнии играют значительную роль в глобальном круговороте азота, появились в середине 70-х годов XX в. после детальных измерений содержания оксидов азота NOx. Последние влияют на концентрацию, распределение озона и гидроксильных радикалов в атмосфере и тем самым - на баланс солнечной радиации и климат. Один из новых и совершенно не изученных вопросов возможное влияние спрайтов и джетов на состав средней атмосферы.
Однако учет электродинамических явлений в моделях климата необходим не только в связи с действием грозовых разрядов как источника оксидов азота в атмосфере. Не менее важен вопрос о возникновении грозовых разрядов как источника пожароопасности. В частности, очень большое значение имеет полярность разрядов облако-земля с точки зрения величины энерговыделения на стадии непрерывного тока молнии. Наконец, первостепенной задачей является оценка влияния динамики заряженных аэрозолей на интенсивность осадков и радиационный баланс атмосферы.
Далеко не все проблемы атмосферного электричества нашли отражение в моей научной работе. Но даже самый беглый взгляд на любую статью, имеющее отношение к тематике моей курсовой работы даст понять, почему в последнее время интерес к электрическим явлениям в атмосфере резко возрос. Прежде всего, это обусловлено пониманием атмосферного электричества как важного фактора окружающей среды, тесно взаимосвязанного с другими составляющими природного комплекса планеты и воздействующего на жизнедеятельность человека. Наряду с известными эффектами (выведение из строя систем электронного обеспечения, воздействие на авиацию, пожароопасность) и совершенствованием методов их контроля, все большее внимание привлекают проблемы электромагнитного загрязнения и его воздействия на экосистемы и человека, а также роли глобальной электрической цепи в системе солнечно-земных связей и климатической системе Земли. Очевидно, что данная область исследований чрезвычайно насыщена интересной физикой. Можно не сомневаться, что активная работа здесь не только поможет разобраться со «старыми» загадками атмосферного электричества, но и принесет множество новых.
Список используемых источников
Основной
1. Филиппов А.Х., Учение об атмосфере. 1-е изд. Изд-во Сибирский институт права, экономики и управления, 2006
2. Хромов С.П., Петросянц М.А. Метеорология и климатология. 4-е изд.- М.: Изд-во Моск. ун-та, 2008.
3. Небел Б., Наука об окружающей среде, Изд-во Москва «МИР», 1993
4. Мареев Е.А., Трахтенгерц. В.И., Загадки атмосферного электричества, Изд-во «Природа»,2003
5. Rakov V.A., Uman M.A. Lightning: physics and effects. Cambridge, 2002.
6. Базелян Э.М., Райзер В.П. Физика молнии и молниезащиты. М., 2001.
7. MacGorman D.R., Rust W.D. The electrical nature of storms. Oxford, 1998.
Дополнительный
1. Астапенко П.Д. Вопросы о погоде.- Л.: Гидрометеоиздат, 2009.
2. Будыко М.И. Климат в прошлом и будущем.- Л.: Гидрометеоиздат, 2007.
3. Хромов С.П., Мамонтов Л.И. Метеорологический словарь.- Л.: Гидрометеоиздат, 2008.
Электронно – программные средства.
1.Интернет словарь и энциклопедия http://dic.academic.ru/
2.Официальный сайт ГИДРОМЕТЦЕНТРА России http://meteoinfo.ru/
3.Интерет-журнал о погоде http://meteoweb.ru/
4. Интернет-журнал о природных явлениях https://sites.google.com/site/differentnaturalphenomena/
Приложения
Классификация облаков и используемые научные сокращения
1. Перистые (Cirrus, Ci)
2.Перисто-кучевые (Cirrocumulus, Cc)
3. Перисто-слоистые (Cirrostratus, Cs)
4. Высоко-кучевые (Altocumulus, Ac)
5. Высоко-слоистые (Altostratus, As)
6. Высоко-слоистые просвечивающие (Altostratus translucidus, As trans)
7. Слоистые (Stratus, St)
8. Слоисто-кучевые (Stratocumulus, Sc)
9. Кучевые облака (Cumulus, Cu)
1) плоские (hum., humilis) — слабо развитые по вертикали (толщина от 100 м до 1 км), в виде плоских "блинов" или "пирогов";
2) средние (med., mediocris) — умеренно развитые по вертикали (толщина 1-2 км), приблизительно кубической формы;
3) мощные (cong., congestus) — сильно развитые по вертикали (мощность более 2 км), в виде башен, их верхние части имеют вид куполов с клубящимися очертаниями, напоминающими цветную капусту; при благоприятных условиях в процессе своего развития превращаются в кучево-дождевые (грозовые) облака.
10. Слоисто-дождевые (Nimbostratus, Ns)
11. Кучево-дождевые (Cumulonimbus, Cb)
Приложения
Типы и высоты облаков
Рис.4
Приложения