- •Расчетно-пояснительная записка по курсовому проекту
- •«Разработка схемы теплового контроля водяного котла утилизатора кув – 35/150»
- •Оглавление
- •Аннотация
- •1. Исходные данные
- •2. Описание теплотехнического объекта
- •3. Расчет недостающих данных
- •Диаметр газопровода
- •Диаметр линии питательной воды
- •4. Разработка технического задания на стк
- •5. Функциональная схема стк
- •5.1. Графическая часть
- •5.2. Описание стк
- •6. Разработка заказной спецификации на средства измерения, вторичные приборы и птк.
- •7. Расчет узла измерения температуры сетевой воды за котлом
- •7.1. Выбор методов и средств измерения
- •7.2. Расчет измерительной схемы вторичного прибора
- •7.3. Расчет измерительной схемы автоматического моста
- •7.3.1. Первый способ
- •7.3.2. Второй способ (по упрощенной методике)
- •7.3.2. Третий способ (из условий максимальной чувствительности и допустимой мощности на термопреобразователе сопротивления)
- •7.4. Определение погрешности при установке термоприёмника
- •7.4.1. Погрешность при измерении температуры, обусловленная отводом тепла по термоприемнику
- •7.5.1. Оценка погрешности термопреобразователя сопротивления
- •7.5.2. Оценка погрешности вторичного прибора
- •7.5.3. Оценка суммарной погрешности информационного канала
- •8. Расчет узла измерения расхода сетевой воды за котлом
- •8.1 Выбор и обоснование метода измерения
- •8.2 Выбор типа сужающего устройства и разработка эскиза установки
- •8.4. Определение погрешности измерения расхода
- •9. Методы и средства измерения кислорода в газах.
- •9.1. Газоанализаторы химические
- •9.2. Тепловые газоанализаторы
- •9.2.1. Термокондуктометрические газоанализаторы
- •9.2.2. Термохимические газоанализаторы
- •9.3. Магнитные газоанализаторы
- •9.3.1. Магнитомеханические газоанализаторы
- •9.3.2. Термомагнитные газоанализаторы
- •9.4. Оптические газоанализаторы
- •9.5. Потенциометрические газоанализаторы
- •9.5.1. Амперометрические газоанализаторы
- •9.5.2. Кулогометрические газоанализаторы
- •9.6. Ионизационные газоанализаторы
- •9.6.1. Радиоизотопные газоанализаторы
- •9.6.2. Электронно-захватные газоанализаторы
- •9.6.3. Аэрозольно-ионизационные газоанализаторы
- •9.6.4. Пламенно - ионизационные газоанализаторы
- •9.6.5. Поверхностно-ионизационные газоанализаторы
- •9.6.6. «Галогенные» газоанализаторы
- •9.7. Полупроводниковые газоанализаторы
- •Заключение
- •Список литературы
9.6.5. Поверхностно-ионизационные газоанализаторы
В поверхностно-ионизационных газоанализаторах образуются, положительные ионы при адсорбции газов на нагретых поверхностях металлов или их оксидов. Ионизоваться могут компоненты с достаточно низкими потенциалами ионизации, сравнимыми по величине с работой выхода электронов из нагретой поверхности (эмиттера). Обычно ионизуются не контролируемые компоненты смеси, а продукты их реакций на каталитически активной поверхности. В качестве эмиттеров применяют, например, нагреваемые током спирали из Pt, оксидов Мо или W. Нагретый эмиттер одновременно служит одним из электродов ионизационной камеры. Второй ("коллекторный") электрод выполняют в виде наружного цилиндра. Температуру нагрева эмиттера изменяют, от 350 до 850 °С. С помощью таких газоанализаторов определяют, фенол, уксусную и муравьиную кислоты, а также (с высокой избирательностью) азотсодержащие органические соединения, в частности анилин, амины, гидразины. Созданы приборы для контроля ряда аминов (диэтиламин, триэтиламин и др.) в воздухе пром. помещений.
9.6.6. «Галогенные» газоанализаторы
В так называемых "галогенных" газоанализаторах на поверхности платины, нагретой до 800-850 °С, ионизуются щелочные металлы (обычно Na и К), добавляемые в виде солей в зону нагрева и ионизации. Эмиссия щелочных ионов зависит от содержания в окружающем воздухе галогенов и их соединений. Эти приборы позволяют определять галогены (С1, Вr) в воздухе пром. помещений, хладоны при контроле герметичности холодильных установок и бытовых аэрозольных баллончиков.
9.7. Полупроводниковые газоанализаторы
Их действие основано на изменении сопротивления полупроводника (пленки или монокристалла) при воздействии анализируемого компонента смеси [15]. В основе работы полупроводниковых окисных газоанализаторах лежит изменение проводимости чувствительности слоя (смеси оксидов металлов) при хемосорбции на его поверхности молекул химически активных газов (рис.15). Такие газоанализаторы применяют для определения горючих газов (в частности, Н2, СН4, пропана), а также О2, СО2и др. Селективность анализа достигается варьированием состава чувствительности слоя и его температуры (при помощи встроенного нагревателя). Диапазон измеряемых концентраций горючих газов 0,01-1% по объему.

Рис.15. Полупроводниковый окисный газоанализатор: 1-подложка; 2-контакты; 3-чувствит. слой; 4-нагреват. элемент; 5-вторичный прибор; 6-источник напряжения.
В полупроводниковых газоанализаторах с кристаллическими чувствительными элементами измеряют проводимость монокристалла или более сложной полупроводниковой структуры с р-n-переходами при изменении зарядового состояния поверхности, т.е. концентрации или распределения зарядов на ней. Например, для определения Н2используют чувствительные элементы в виде системы слоев металл - диэлектрик - полупроводник (канальные транзисторы), причем верхний металлический слой получают из Pd или его сплавов. Изменение зарядового состояния поверхности достигается изменением контактной разности потенциалов между полупроводником и Pd при растворении в последнем Н2, присутствующего в анализируемой смеси.
Для серийного производства полупроводниковых газоанализаторов применяют современные технологию микроэлектроники, что позволяет создавать измерительный преобразователь, включающий чувствительность элементов, систему термостатирования и усилитель электрического сигнала в виде отдельного микромодуля.
