
- •Расчетно-пояснительная записка по курсовому проекту
- •«Разработка схемы теплового контроля водяного котла утилизатора кув – 35/150»
- •Оглавление
- •Аннотация
- •1. Исходные данные
- •2. Описание теплотехнического объекта
- •3. Расчет недостающих данных
- •Диаметр газопровода
- •Диаметр линии питательной воды
- •4. Разработка технического задания на стк
- •5. Функциональная схема стк
- •5.1. Графическая часть
- •5.2. Описание стк
- •6. Разработка заказной спецификации на средства измерения, вторичные приборы и птк.
- •7. Расчет узла измерения температуры сетевой воды за котлом
- •7.1. Выбор методов и средств измерения
- •7.2. Расчет измерительной схемы вторичного прибора
- •7.3. Расчет измерительной схемы автоматического моста
- •7.3.1. Первый способ
- •7.3.2. Второй способ (по упрощенной методике)
- •7.3.2. Третий способ (из условий максимальной чувствительности и допустимой мощности на термопреобразователе сопротивления)
- •7.4. Определение погрешности при установке термоприёмника
- •7.4.1. Погрешность при измерении температуры, обусловленная отводом тепла по термоприемнику
- •7.5.1. Оценка погрешности термопреобразователя сопротивления
- •7.5.2. Оценка погрешности вторичного прибора
- •7.5.3. Оценка суммарной погрешности информационного канала
- •8. Расчет узла измерения расхода сетевой воды за котлом
- •8.1 Выбор и обоснование метода измерения
- •8.2 Выбор типа сужающего устройства и разработка эскиза установки
- •8.4. Определение погрешности измерения расхода
- •9. Методы и средства измерения кислорода в газах.
- •9.1. Газоанализаторы химические
- •9.2. Тепловые газоанализаторы
- •9.2.1. Термокондуктометрические газоанализаторы
- •9.2.2. Термохимические газоанализаторы
- •9.3. Магнитные газоанализаторы
- •9.3.1. Магнитомеханические газоанализаторы
- •9.3.2. Термомагнитные газоанализаторы
- •9.4. Оптические газоанализаторы
- •9.5. Потенциометрические газоанализаторы
- •9.5.1. Амперометрические газоанализаторы
- •9.5.2. Кулогометрические газоанализаторы
- •9.6. Ионизационные газоанализаторы
- •9.6.1. Радиоизотопные газоанализаторы
- •9.6.2. Электронно-захватные газоанализаторы
- •9.6.3. Аэрозольно-ионизационные газоанализаторы
- •9.6.4. Пламенно - ионизационные газоанализаторы
- •9.6.5. Поверхностно-ионизационные газоанализаторы
- •9.6.6. «Галогенные» газоанализаторы
- •9.7. Полупроводниковые газоанализаторы
- •Заключение
- •Список литературы
9.4. Оптические газоанализаторы
Оптические газоанализаторы основаны на использовании зависимости изменения того или иного оптического свойства анализируемой газовой смеси от изменения концентрации измеряемого компонента. В оптических газоанализаторах исполь зуются такие оптические свойства, как спектральное поглощение, оптическая плотность, показатель, преломления, спектральное излучение газовой смеси и др [15].
В соответствии с оптическим свойством, положенным в основу принципа работы прибора, оптические газоанализаторы подразделяются на следующие основные три группы (ГОСТ 13320-67):
Абсорбционные — основанные на поглощении лучистой энергии в инфракрасной области спектра (в том числе оптико-акустические), ультрафиолетовой и видимой областях спектра (фотоколориметрические жидкостные и ленточные).
Интерферометрические — основанные на использовании явления смещения интерференционных полос вследствие изменения оптической плотности газовой среды на пути одного из двух когерентных лучей.
Эмиссионные — основанные на излучении лучистой энергии, например на измерении интенсивности спектральных линий излучения компонента, зависящей от его концентрации в анализируемой газовой смеси. Этот метод, предложенный С. Эфришем, принято называть методом эмиссионного спектрального анализа газовой смеси.
Газоанализаторы, основанные на поглощении инфракрасных лучей, получили широкое применение в различных отраслях промышленности и применяются для определения концентрации окиси углерода (СО), двуокиси углерода (СО2), метана (СН4), аммиака (NH3) в сложных газовых смесях, а также и других газов. Это объясняется тем, что в инфракрасной области спектра газы имеют весьма интенсивные и отличительные друг от друга по положению в спектре полосы поглощения.
Газоанализаторы, основанные на поглощении ультрафиолетовых лучей, применяются в химической, нефтяной и пищевой промышленности. Благодаря высокой чувствительности они широко используются для определения токсических и взрывоопасных концентраций различных газов в воздухе промышленных предприятий. Газоанализаторы этого типа позволяют определять содержание паров ртути, хлора и других газов и паров как в воздушной среде, так и в технологических газовых смесях.
Газоанализаторы фотоколориметрические, основанные на поглощении лучей в видимой области спектра, подразделяются на жидкостные и ленточные. Жидкостные газоанализаторы являются приборами с непосредственным (прямым) поглощением излучения определяемым компонентом при взаимодействии анализируемого компонента с жидким реактивом. В газоанализаторах второго типа измеряется светопоглощение поверхностью бумажной или текстильной ленты, предварительно пропитанной или смоченной соответствующим реактивом. Фотоколориметрические газоанализаторы широко применяют для измерения микроконцентрации различных газов в воздушной среде и в сложных газовых смесях. Эти газоанализаторы широко используются также для определения в воздухе промышленных предприятий токсической концентрации различных газов и паров, вредных для человека. Фотоколориметрические газоанализаторы для определения больших концентраций не применяются. Следует отметить, что фотоколориметрический метод находит широкое применение для анализа жидкостей, в частности для анализа воды на ТЭС.
Спектрофотометрические газоанализаторы, основанные на методе эмиссионного спектрального анализа газовой смеси, используются для анализа аргона, гелия, азота, водорода и кислорода на примеси.