Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Архив2 / курсач docx51 / kursach_konstruirovanie_-_kopia_-_kopia(1).docx
Скачиваний:
44
Добавлен:
07.08.2013
Размер:
833.31 Кб
Скачать

Введение

Последовательное проведение намеченного ОАО «РЖД» курса на обеспечение устойчивой работы железных дорог, стабильного и эффективного функционирования отрасли на основе сбалансированности использования имеющихся технических средств, внедрения технологически обоснованных принципов управления позволило в первом полугодии нынешнего года заметно улучшить работу отрасли.

Проектирование вагонов является сложной инженерной задачей, обеспечивающей безопасность движения поездов. В значительной мере оно влияет на технико-экономические показатели всех подразделений железных дорог и многих отраслей народного хозяйства и населения страны, пользующихся услугами железнодорожного транспорта. В создании нового типа и конструкции вагона принимают участие специалисты научно-исследовательских и проектно-конструкторских организаций, заводов вагоностроительной, металлургической, электротехнической и других отраслей промышленности.

Создание высокоэффективных типов и конструкций вагонов, качественное техническое их обслуживание и ремонт во многом зависит от квалификации специалистов вагонного хозяйства. Для поддержания высокого технического уровня вагонного парка в современных условиях необходимо применение новейших технологий с использованием средств механизации и автоматизации процессов при проектировании, постройке и эксплуатации вагонов. Незначительное повышение эффективности вагонов приводит к существенным суммарным результатам.

Оптимизация перевозочного процесса и инфраструктуры, используемой для перевозок, обеспечит высокую эффективность работы железных дорог в условиях реформирования отрасли, будет способствовать сокращению эксплуатационных затрат и прибыльной работе ОАО «РЖД». Разработка плана формирования вагонов с контейнерами является актуальной проблемой для железных дорог РФ. В настоящее время среднесуточные объемы погрузки - выгрузки 38% контейнерных пунктов для переработки среднетоннажных контейнеров не превышает одного контейнера в сутки и только на 19,2% КП переработка достигает 10 у.е. Рациональная организация контейнеропотоков предусматривает наиболее экономичные пути их следования, порядок формирования поездов и вагонов с контейнерами. Календарное планирование погрузки контейнеров имеет отрицательный эффект, который состоит в том, что уменьшение периодичности приема грузов к перевозке ведет к снижению качества транспортного обслуживания грузоотправителей.

1.Конструкция 4-осной цистерны для сжиженных углеводородных газов, модели 15-1519.

Цистерны предназначены для перевозки жидких, газообразных, затвердевающих и порошкообразных грузов. Они различаются по роду перевозимых грузов, конструкции рамы, осности и калибровочному типу. Перевозимые грузы размещаются в котле, представляющем собой специфическую форму кузова.            Универсальные цистерны подразделяются на цистерны для перевозки светлых (бензин, керосин, лигроин и т.п.) и темных (нефть, минеральные масла и т.п.) наливных грузов.            Все универсальные цистерны железных дорог России оборудованы нижними сливными приборами, обеспечивающими надежную герметичность затворов.            Массу жидкого груза, перевозимого в цистернах, определяют замерно-калибровочным способом, при котором измеряют высоту наполнения котла, учитывают плотность груза и затем по специальным калибровочным таблицам, в которых приведена емкость котлов в зависимости от уровня его налива, подсчитывают массу груза. Калибровочный тип цистерны обозначен в виде металлических цифр, приваренных к котлу на обеих сторонах его цилиндрической части.            В зависимости от устройства несущих элементов цистерны разделяются на конструкции, в которых все основные нагрузки, действующие на цистерну, воспринимаются рамой котла, и конструкции, в которых эти нагрузки воспринимаются котлом (безрамные цистерны). Кроме того, цистерны различаются по осности, грузоподъемности, объему котла, устройству, материалу и способу изготовления котла.

Вагон-цистерна модели 15-1519 предназначена для перевозки сжиженных углеводородных газов, легкого углеводородного сырья и смесей(пропана, н-бутана, пропилена, нестабильного газового бензина, бутилен-бутадиена, бутан-бутилена, изопрена, изоамилена, н-бутилена, псевдобутилена, широкой фракции углеводородов).

Вагон-цистерна состоит из котла, ходовых частей, ударно-тяговых приборов, тормозного оборудования.

1.1.Устройство котла цистерны 15-1519.

Котел представляет собой цилиндрическую емкость сварной конструкции, состоящую из обечаек и эллиптических днищ, подкрепленную шпангоутами для повышения несущей способности и жесткости цилиндрической оболочки.

Материал котла- Ст09Г2С-12.

Котел цистерны рассчитан на рабочее давление 2,0 МПа (20 кгс/см2) и имеют толщину стенки цилиндрической части 24мм и днищ 25 мм. Люк диаметром 450 мм располагается в средней части котла.

Сливоналивная, контрольно-измерительная арматура и предохранительный клапан размещаются на крышке люка и закрыты защитным колпаком.

Перед первым наполнением цистерны после поступления вагона в эксплуатацию с завода-изготовителя или из ремонта, котел необходимо продуть инертным газом до удаления воздуха. В процессе эксплуатации свободный объем котла заполняется паровой фазой перевозимого продукта. После слива продукта давление в котле снижается до 0,07 МПа (0,7 кгс/см2) откачиванием газовой фазы через газовый вентиль.

Пружинный предохранительный клапан (рис. 5.4) состоит из корпуса-втулки 1 с присоединительным фланцем, втулки 2, с конусным седлом клапана, запрессованном в корпус, тарельчатого клапана 6, на котором укреплена крышка 4 с резиновой прокладкой 5, обеспечивающей полную герметичность сопряжения конусных поверхностей седла и тарели. Опирание тарели клапана на седло обеспечивает разгрузку от действия запирающей пружины 7 резиновой прокладки и увеличивает срок ее службы. Крышка 4 крепится специальной гайкой 3, регулирующей прижатие резиновой прокладки к наружной плоскости тарели клапана. Давление срабатывания (открытия) клапана определяется усилием начальной затяжки пружины 7 и регулируется гайками 9, на которые усилие пружины передается через опорную втулку 8 и сферическую шайбу 10.

Слив и налив верхний передавливанием.

Рама цистерны типовая сварной конструкции без боковых продольных балок между шкворневыми, длиной 10,8 м. 

Применяется рама для всех четырехосных цистерн с  базой 7800 мм независимо от перевозимый грузов. Рама состоит из хребтовой 5, двух шкворневых 6 и двух концевых 9 балок, соединенных со шкворневыми балками 6 боковыми обвязками 8 и 10.

Хребтовая балка выполнена из двух швеллеров 14 № ЗОВ, перекрытых сверху и снизу накладками 13 и 15 толщиной 7 мм. 

На хребтовой балке крепятся передние 1 и задние 3 упоры автосцепки, предохранительные наладки 2, кронштейны для тормозного оборудования и лапы для крепления котла. Предохранительные накладки 2 защищают вертикальные стенки  хребтовой балки от истирания поглощающим аппаратом автосцепки.

Шкворневые балки 6 коробчатого сечения, сварены из верхнего 11 (10 мм), нижнего 12 (12 мм) и двух вертикальных 7 листов (8 мм). Сверху на шкворневых балках укрепляются металлические опоры котла. Зона соединения шкворневой и хребтовой балок усилена надпятниковой коробкой 4.

Концевые балки 9 и боковые обвязки 10 изготовлены из штамповок Г-образной формы толщиной 6 мм. Котел на раме  крепят в средних и концевых ее частях. 

Для предотвращения продольных смещений только лишь средняя часть котла жестко связана с рамой фасонными лапами 2, приваренными к нижнему листу 1 и соединенными призонными болтами 3 с лапами 4 хребтовой балки 5 рамы. 

Концевые части котла свободно лежат на деревянных брусках 8 и 10, укрепленных болтами 9 в металлических желобах 11 опор 12, установленных на шкворневых балках 13 рамы.

Для предотвращения вертикальных и поперечных перемещений предусмотрены стяжныехомуты 6, которыми концевые части котла при помощи винтовых муфт 7 крепятся к крайним опорам.                           

1.2. Ходовая часть

В настоящее время грузовые вагоны железных дорог России строят с тележками типа 18-100 (рис.1.2), которые имеют кли­новые гасители колебаний.

Боковая рама 3 тележки выполнена в виде стальной отливки, в средней части которой расположен проем для рессорного комплекта, а по концам — проемы для букс.

В верхней части буксовых проемов имеются кольцевые приливы, ко­торыми боковые рамы опираются на буксы, а по бокам — буксовые челюсти.

Сечения наклонных элементов (поясов) и вертикальных стержней (ко­лонок) боковой рамы имеют корытообразную форму с некоторым загибом внутрь концов полок. Горизонтальный участок нижнего пояса имеет замкну­тое коробчатое сечение. Балки с таким профилем хорошо сопротивляются изгибу и кручению.

По бокам среднего проема в верхней части рамы расположены направ­ляющие для ограничения поперечного перемещения фрикционных клинь­ев, а внизу имеется опорная поверхность для установки рессорного комплек­та. С внутренней стороны к этой поверхности примыкают полки, являющие­ся опорами для наконечников триангелей в случае обрыва подвесок, которы­ми триангели подвешены к кронштейнам боковой рамы.) В местах располо­жения клиньев к колонкам рамы приклепаны фрикционные планки. На на­клонном поясе отливают пять цилиндрических выступов (шишек), часть ко­торых срубается в соответствии с, фактическим расстоянием между наружны­ми челюстями буксовых проемов. Подбор боковых рам при сборке тележек производят по числу оставленных шишек, что гарантирует соблюдение не­обходимых допусков для обеспечения параллельности осей колесных пар.

Надрессорная балка тележки отлита заодно с подпятни­ком, опорами для размещения скользунов, гнездами для фрикционных кли­ньев и приливом для крепления кронштейна мертвой точки рычажной пе­редачи тормоза. Балка выполнена по форме бруса равного сопротивления изгибу в соответствии с эпюрой изгибающих моментов и име­ет коробчатое замкнутое сечение.

Рис.1.2 Тележка 18-100.

1.3. Автосцепное устройство

Автосцепное устройство вагона обычно состоит из сле­дующих частей: корпуса и расположенного в нем механизма; расцепного привода; ударно-центрирующего прибора; упряжного устройства; погло­щающего аппарата; опорных частей.

Устройство корпуса и механизма автосцепки определяет ее тип и кон­струкцию, поэтому корпус с механизмом часто называют автосцепкой.

Вагоны и локомотивы магистральных железных дорог Советского Сою­за оборудованы автоматической сцепкой СА-3 (советская автосцепка, тре­тий вариант), утвержденной в 1934 г. в качестве типовой. Эта автосцепка (рис. 1.3) относится к нежестким.

Рис.1.3 Корпус автосцепки СА-3.

1.4. Расцепной привод, ударно-центрирующий прибор, упряжное устройство и опорные части.

Расцепной привод автосцепки СА-3, как и других распростра­ненных конструкций автоматических сцепок, предназначен для расцепления автосцепок без захода человека между вагонами и для установки меха­низма в выключенное положение. Такой привод (рис. 1.4.1.) состоит из, кронштейна с полкой 2, державки 10 и це­пи 14 для соединения рычага с валиком подъемника.

Расцепление автосцепок осуществляется поднятием рукоятки вверх для выве­дения рычага 3 из паза кронштейна, поворотом рычага против часовой стрелки и по­следующим восстановлением его исходного положения. В результате этого натягивается цепь 14, поворачивается валик подъемника, и расцепление автосцепок происходит, как описано выше.

Для установки механизма автосцепки в выключенное положение рукоятку ры­чага после поворота не возвращают в первоначальное положение, а располагают его плоской частью на полке 2 кронштейна.

Ударно-центрирующий прибор воспринимает непо­средственно от корпуса автосцепки большие сжимающие усилия (вызываю­щие полное сжатие поглощающего аппарата и деформации упряжного уст­ройства), а также возвращает в центральное положение отклоненный кор­пус. Прибор состоит из ударной розетки 9, прикрепленной к концевой бал­ке рамы вагона, двух маятниковых подвесок 11, опирающихся на розетку, и центрирующей балки 12, опирающейся на подвески и поддерживающей корпус автосцепки, при высоком отклонении корпус 13 вместе с центрирующей балкой несколько поднимается вверх, а после прекращения действия боко­вой силы под воздействием собствен­ного веса возвращается в исходное нижнее (центральное) положение.

Рис. 1.4.1. Автосцепное устройство грузового вагона.

Большие вертикальные силы могут возникнуть в результате зависания одного вагона на другом при возможном заклинивании сцепленных автосце­пок во время прохода горба сортировочной горки, особенно у вагонов с боль­шой длиной консольной части рамы кузова. Опирание корпуса на пружины предотвращает такое заклинивание и позволяет значительно уменьшить эти силы, передаваемые от автосцепки на раму кузова вагона.

Для возвращения отклоненного корпуса автосцепки в центральное по­ложение предусмотрены удлиненные маятниковые подвески 6.

Упряжное устройство передает продольные растягиваю­щие и сжимающие усилия от корпуса 13 поглощающему ап­парату 5. Оно состоит из клина 8, тягового хомута 6, болтов с гайка­ми, запорными шайбами, планкой и шплинтами для крепления клина, а так­же упорной плиты 1.

Клин соединяет корпус автосцепки с тяговым хомутом и передает последнему растягивающее усилие. Имеющийся внизу заплечик предотвра­щает выжимание клина вверх. Для повышения прочности клинья, а также маятниковые подвески и упорные плиты в последние годы изготовляют из низколегированной стали марки 38ХС вместо ранее применявшейся стали марки Ст5.

Тяговый хомут предназначен для передачи растягивающего уси­лия поглощающему аппарату. Он представляет собой стальную отливку, в головной части которой имеются окно для клина и приливы с отверстиями для прохода болтов, поддерживающих клин. Головная часть тягового хо­мута соединена с его хвостовой частью верхней и нижней полосами. В мо­дернизированном автосцепном устройстве эти полосы имеют увеличенное поперечное сечение, а вертикальные отверстия в головной части выполнены круглыми (для валика). Для размещения поглощающего аппарата увели­ченной энергоемкости, обычно имеющего большие габариты, увеличено рас­стояние между полосами (252 вместо 236 мм); обеспечивается также возмож­ность большего поворота корпуса автосцепки в горизонтальной плоскости.

Упорная плита передает сжимающее усилие от корпуса авто­сцепки поглощающему аппарату и растягивающие усилия от последнего че­рез передний упор раме кузова вагона. Плита имеет прямоугольную форму и цилиндрическое гнездо в середине, облегчающее повороты корпуса автосцеп­ки в горизонтальной плоскости и обеспечивающее центральную передачу усилия.

Опорные части соединяют упряжное устрой­ство и поглощающий аппарат с рамой кузова вагона. Они состоят из переднего 9 и заднего 1 упоров и поддерживающей планки 4. К ним относятся также верх­ние ограничительные планки, устанавливаемые в случаях, когда конструкция хребтовой балки или других частей ва­гона не препятствует переме­щению тягового хомута вверх на расстояние более 24 мм.

Через передний упор на раму кузова вагона переда­ются растягивающие продоль­ные усилия, а через задний - сжимающие. Раньше эти упо­ры (упорные угольники) вы­полняли раздельными, а в последние годы - объеди­нен. Объединенный передний упор отливают вме­сте с розеткой (рис. 1.4.2, а), а задний при коротких консо­лях рамы кузова - заодно с надпятниковым усилением этой рамы или так, как изо­бражено на (рис. 1.4.2, б).

Переход к объединенным упорам обусловлен тем, что они в отличие от раздельных усиливают хребтовую балку и уменьшают перекос погло­щающего аппарата, возмож­ный при неточной установке раздельных угольников. Та­кой перекос перегружает от­дельные элементы хребтовой балки и вызывает ненормаль­ный износ ее и деталей уп­ряжного устройства.

Рис.1.4.2. Объединенные унифицированные упоры;

а - передний; б - задний.

Соседние файлы в папке курсач docx51