Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Метод указ по мат методам.doc
Скачиваний:
452
Добавлен:
13.05.2015
Размер:
2.07 Mб
Скачать

Метод множителей Лагранжа

Способ определения условного экстремума начинается с построения вспомогательной функции Лагранжа, которая в области допустимых решений достигает максимума для тех же значений переменных x1, x2, ..., xn, что и целевая функция z. Пусть решается задача определения условного экстремума функции z = f (X) при ограничениях φi (x1, x2, ..., xn ) = 0, i = 1, 2, ..., m, m < n

Составим функцию

(7)

которая называется функцией Лагранжа. X, — постоянные множители (множители Лагранжа). Отметим, что множителям Лагранжа можно придать экономический смысл. Если f (x1, x2, ..., xn ) — доход, соответствующий плану X = (x1, x2, ..., xn ), а функция φi (x1, x2, ..., xn ) — издержки i-го ресурса, соответствующие этому плану, то X, — цена (оценка) i-го ресурса, характеризующая изменение экстремального значения целевой функции в зависимости от изменения размера i-го ресурса (маргинальная оценка). L(Х) — функция n + m переменных (x1, x2, ..., xn , λ1, λ2, ..., λn ). Определение стационарных точек этой функции приводит к решению системы уравнений

(8)

Легко заметить, что . Таким образом, задача нахождения условного экстремума функции z = f (X) сводится к нахождению локального экстремума функции L(X). Если стационарная точка найдена, то вопрос о существовании экстремума в простейших случаях решается на основании достаточных условий экстремума — исследования знака второго дифференциала d2L(X) в стационарной точке при условии, что переменные приращения Δxi - связаны соотношениями

(9)

полученными путем дифференцирования уравнений связи.

Решение системы нелинейных уравнений с двумя неизвестными с помощью средства Поиск решения

Настройка Поиск решения позволяет находить решение систе­мы нелинейных уравнений с двумя неизвестными:

где - нелинейная функция от переменныхx и y, - произвольная постоянная.

Известно, что пара (x, y) является решением системы уравнений (10) тогда и только тогда, когда она является решением следующего уравнение с двумя неизвестными:

С другой стороны, решение системы (10) — это точки пересечения двух кривых: f](x,y) = C и f2(х, у) = С2 на плоскости ХОY.

Из этого следует метод нахождения корней системы. нелинейных уравнений:

  1. Определить (хотя бы приближенно) интервал существования решения системы уравнений (10) или уравнения (11). Здесь не­обходимо учитывать вид уравнений, входящих в систему, область определения каждого их уравнений и т. п. Иногда применяется подбор начального приближения решения;

  2. Протабулировать решение уравнения (11) по переменным x и y на выбранном интервале, либо построить графики функций f1(x,y) = С, и f2(х,у) = С2 (система(10)).

  3. Локализовать предполагаемые корни системы уравнений — найти несколько минимальных значений из таблицы табулирование­ корней уравнения (11), либо определить точки пересечения кривых, входящих в систему (10).

4. Найти корни для системы уравнений (10) с помощью надстройки Поиск решения.