
- •Общие сведения о пластмассах
- •Пластмассами (пластиками) называются материалы, получаемые на основе полимерных соединений и чаще всего формуемых
- ••Название «пластмассы» означает, что эти материалы под действием нагревания и давления способны формироваться
- ••Пластмассы могут быть простые, представляющие собой чистые полимеры, и сложные, в состав которых
- •Основные компоненты пластмасс
- •Пластификаторы
- •Механизм действия пластификаторов
- •Из механизма пластификации следует, что макромолекулы полимера должны быть разделены молекулами пластификатора. Выполнение
- ••Главным результатом введения пластификатора является понижение температуры стеклования Тс и температуры текучести Тт
- •Изменение
- •Основные требования к пластификатору
- •Пластификаторы должны хорошо совмещаться с полимером, не испаряться, быть химически стабильными и экологически
- •Наполнители
- •Сочетание полимеров с наполнителями позволяет получать материалы с совершенно новыми эксплуатационными свойствами.
- ••Повышение твердости и модуля упругости
- •Прочность частиц наполнителя очень важна при создании пластмассы. Однако определить это свойство для
- ••Наполнители, уменьшая содержание полимера в пластмассах, значительно снижают их стоимость, усадку и деформативность.
- •Пластмассы с наполнителями
- •Стабилизаторы
- •Отвердители, инициаторы, газообразователи, красители
- •Газонаполненные пластмассы
- •Получение газонаполненных полимеров
- •Фиксация ячеистой структуры
- •Способы получения газонаполненных полимеров
- •Свойства газонаполненных полимеров
- •Применение газонаполненных полимеров
- ••Красители применяют для окрашивания пластмасс. Ими могут быть тонкоизмельченные минеральные пигменты или органические
- •Антипирены
- •Существуют несколько механизмов замедления процессов горения с помощью антипиренов:
- •Современные пластмассы – композиционные материалы
- •Классификация пластмасс
- •• По термическим свойствам пластмассы подразделяются на:
- •В зависимости от входящих в состав компонентов все пластмассы можно разделить на следующие
- ••По характеру макроструктуры пластмассы подразделяются на:
- •Пластмассы различают по виду связующего материала :
- •Взависимости от области применения различают пластмассы:
- •Свойства пластмасс
- •Свойства пластмасс
- •Свойства пластмасс
- •Модуль упругости или модуль Юнга
- •Модуль упругости
- ••В зависимости от модуля упругости выделяют жесткие, полужесткие, мягкие и эластичные пластмассы.
- •Теплостойкость пластмасс
- ••Во многих случаях предельная рабочая температура определяется не степенью деформации материала, а другими
- ••Теплопроводность плотных пластмасс без наполнителя 0,116—0,348 Вт/(м°С). Для пористых пластмасс она приближается к
- •Химическая стойкость пластмасс
- •Химические и физико- химические свойства
- •Свойства пластмасс
- •Старение пластмасс
- ••При старении возможно протекание в полимере двух процессов: структурирование (т. е. сшивка молекул),
- •Токсичность пластмасс
- •Пути регулирования свойств
- •Преимущества материалов из пластмасс
- •Области применения пластмасс
- •Современные строительные материалы из пластмасс
- •Электроизоляционные материалы из пластмасс
- •Антифрикционные материалы из пластмасс
- ••Понятно, что основным критерием при выборе материала подшипника являются затраты энергии (А) на
- •Материалы из пластмасс
- •Перспективы развития производства пластмасс
- •Утилизация пластмасс
- •Решение вопроса с отходами может идти следующими путями:
- ••На некоторых пластмассовых изделиях вы можете увидеть треугольник, стенки которого образуют стрелки. В
- ••К пластиковым упаковочным материалам относят 7 групп пластмасс, для каждого из которых существует
- •Переработка пластмасс в изделия
- •Реакция пластмасс на термомеханический цикл
- •Принципиальная схема процесса литья под давлением
- •Экструзия
- ••Большинство термопластов и композиций на их основе могут перерабатываться экструзией.
- •Метод раздувного формования
- ••1 − форма;
- •Формование изделий
- •Горячее прессование
- •Горячее штампование
- •Вакуумформование
- •Пневмоформование
- •Автоматическая линия негативного пневмоформования с выжимкой пуансоном
- •Автоматическая линия негативного пневмоформования
- •Ротационное формование
- •Каландрирование
- •Механическая обработка и сборка
- •Декорирование изделий
- •Какие из предложенных утверждений неверны?
- •Контрольная работа № 1 Основные сведения о полимерах и пластмассах

Общие сведения о пластмассах

Пластмассами (пластиками) называются материалы, получаемые на основе полимерных соединений и чаще всего формуемых в изделия методами, основанными на использовании их
пластических деформаций.
Деформация - изменение взаимного положения частиц тела, связанное с их перемещением друг относительно друга.
Необратимые деформации, называемые также пластическими, сохраняются после снятия нагрузки.
•Название «пластмассы» означает, что эти материалы под действием нагревания и давления способны формироваться и сохранять после охлаждения или отвердения заданную форму.
•Процесс формования сопровождается переходом
пластически деформируемого состояния в стеклообразное состояние.
•Свойства полимеров, являющихся основой пластмасс, определяют свойства и технологический процесс производства пластмассовых изделий.
•Пластмассы могут быть простые, представляющие собой чистые полимеры, и сложные, в состав которых помимо полимера могут быть введены наполнители, пластификаторы, красители и другие добавки различного назначения.

Основные компоненты пластмасс
•Основным и обязательным компонентом пластмасс является полимер, но только лишь некоторые строительные пластмассы целиком состоят из полимера (например, органическое стекло, состоящее из полиметилметакрилата).
•Полимер в пластмассах выполняет роль связующего. От вида полимера, его свойств и количества зависят важнейшие свойства этих многокомпонентных материалов.
•В состав большинства пластмасс входят и другие компоненты: наполнители, пластификаторы, стабилизаторы, красители и др.

Пластификаторы
•В некоторые термопластичные пластмассы вводится пластификатор, который, проникая внутрь полимера, вызывает его набухание. При этом уменьшаются силы межмолекулярного сцепления и облегчается формуемость.
•Особенно необходимо введение пластификатора, когда температура деструкции (разрушения) ниже температуры формования полимера.
•С молекулярной точки зрения под
пластификацией полимеров понимается увеличение подвижности структурных элементов полимера при введении в него специально подобранных жидкостей – пластификаторов, не взаимодействующих химически с полимером.

Механизм действия пластификаторов
•При растворении в полимере жидкости (пластификатора) макромолекулы оказываются окруженными молекулами этой жидкости. Это ведет к понижению взаимодействий между
макромолекулами.
•Кроме того, молекулы низкомолекулярной жидкости являются более подвижными и легче обмениваются местами, чем макромолекулы полимера.
•Снижение межмакромолекулярного взаимодействия и наличие в системе подвижного низкомолекулярного компонента ведет к повышению молекулярной
подвижности всей системы.
•Это вызывает изменение всего комплекса свойств полимера: изменяются его прочностные, деформационные, температурные, электрические свойства.

Из механизма пластификации следует, что макромолекулы полимера должны быть разделены молекулами пластификатора. Выполнение этого условия предусматривает обязательную растворимость пластификатора в полимере.
Кроме того, молекулы пластификатора должны обладать значительно более высокой подвижностью, чем макромолекулы полимера.
•Главным результатом введения пластификатора является понижение температуры стеклования Тс и температуры текучести Тт полимера.
•С увеличением содержания пластификатора температура стеклования и температура текучести закономерно снижаются.
•Следовательно, в присутствии пластификатора полимер сохраняет высокоэластические свойства при более низкой температуре, также снижается и температура его переработки.

Изменение
температуры стеклования Тс и температуры текучести Тт жесткоцепных полимеров при введении пластификатора
В зависимости от гибкости (или жесткости) макромолекул все полимеры можно условно разделить на гибкоцепные и жесткоцепные в зависимости от длины свободно сочлененных сегментов, способных ориентироваться в пространстве независимо друг от друга