- •Комп’ютерна електроніка
- •1 Вступ
- •2 Дискретизація аналогових сигналів
- •2.1 Квантування за рівнем
- •2.2 Квантування за часом
- •2.3 Квантування за рівнем і за часом
- •2.3.1 Розмір похибки ацп
- •2.3.2 Вибір величини кроку квантування за часом
- •3 Застосування алгебри логіки (булевої алгебри) при аналізі і синтезі цифрових електронних пристроїв
- •3.1 Визначення і способи задання перемикальних функцій
- •3.4 Базисні логічні функції
- •3.5 Принцип двоїстості булевої алгебри
- •3.6 Основні тотожності булевої алгебри
- •3.7 Основні закони булевої алгебри
- •3.8 Досконала диз’юнктивна нормальна форма (дднф) запису булевих виразів
- •3.9 Диз’юнктивна нормальна форма
- •3.10 Досконала кон’юнктивна нормальна форма (дкнф) запису булевих виразів
- •3.11 Кон’юнктивна нормальна форма (кнф)
- •3.12 Мінімізація логічних функцій
- •3.12.1 Алгебраїчний спосіб мінімізації пф
- •3.12.2 Мінімізація пф із використанням діаграм Вейча (карт Карно)
- •3.12.2.1 Мінімізація пф за допомогою діаграм Вейча
- •3.12.2.1.1 Загальне правило мінімізації
- •3.12.2.1.2 Приклади мінімізації пф за допомогою діаграм Вейча
- •3.12.2.2 Мінімізація пф за допомогою карт Карно
- •4 Логічні елементи
- •4.1 Інвертор (логічний елемент ні)
- •4.2 Кон’юнктор (логічний елемент і)
- •4.3 Диз’юнктор (логічний елемент або)
- •4.4 Повторювач
- •4.7 Виключаюче або
- •4.8 Додавання по модулю два (непарність)
- •4.9 Додавання по модулю два з запереченням (парність)
- •4.10 Еквівалентність
- •4.11 Нееквівалентність
- •4.13 Заборона
- •4.14 Логічні елементи з відкритим колектором
- •4.15 Логічні елементи з третім станом
- •5 Реалізація логічних функцій у різних базисах
- •5.1 Базисні набори ле і їх взаємозв'язок
- •5.2 Реалізація логічних функцій у різноманітних базисах
- •5.2.1 Реалізація елемента “Рівнозначність” (виключаюче або - ні)
- •5.2.2 Реалізація елемента “нерівнозначність” (виключаюче або, сума по модулю два)
- •5.2.3 Реалізація елемента “Заборона”
- •5.2.4 Реалізація багатолітерних логічних функцій на елементах з невеликою кількістю входів
- •6 Параметри і характеристики цифрових інтегральних мікросхем (імс)
- •6.1 Коефіцієнт об'єднання по входу (Коб)
- •6.2 Коефіцієнт розгалуження по виходу (Кроз)
- •6.3 Статичні характеристики
- •6.4 Завадостійкість
- •6.5 Динамічні характеристики і параметри
- •6.6 Вигляд реалізованої логічної функції
- •6.7 Споживані струм і потужність
- •6.8 Вхідні і вихідні струми, напруги
- •6.9 Порогові напруги
- •6.10 Допустимі значення основних параметрів
- •7 Базові логічні елементи
- •7.1 Базовий ттл (ттлш) - елемент і - ні
- •7.2 Базовий езл - елемент або/або-ні
- •7.3 Базовий кмон елемент або-ні
- •8 Генератори тактових імпульсів (гті) на логічних елементах
- •8.1 Гті на двох інверторах
- •8.2 Гті на 3-х інверторах.
- •9 Функціональні пристроїкомп'ютерної (цифрової) електроніки
- •9.1 Комбінаційні цифрові пристрої (кцп)
- •9.1.1 Аналіз і синтез кцп
- •9.1.1.1 Аналіз кцп
- •9.1.1.2 Синтез кцп
- •9.1.2 Типові кцп
- •9.1.2.1 Шифратори та дешифратори
- •9.1.2.1.1 Шифратори двійкового коду
- •9.1.2.1.2 Шифратори двійково-десяткового коду
- •9.1.2.1.3 Дешифратори двійкового коду
- •9.1.2.1.4 Дешифратор bcd - коду всемисегментний код
- •9.1.2.1.4.1 Семисегментні індикатори на світлодіодах
- •9.1.2.2 Мультиплексори й демультиплексори
- •9.1.2.2.1 Мультиплексори
- •9.1.2.2.2 Демультиплексори
- •9.1.2.2.3 Мультиплексори-селектори (мультиплексори-демультиплексори)
- •9.1.2.3 Cуматори і напівсуматори
- •9.1.2.4 Пристрої контролю парності (пкп)
- •9.1.2.5 Цифрові компаратори
- •9.1.3 Використання для проектування кцп мультиплексорів, дешифраторів і постійного запам’ятовуючого пристрою
- •9.1.3.1 Побудова кцп на мультиплексорах
- •9.1.3.2 Побудова кцп на дешифраторах
- •9.1.3.3 Побудова кцп на постійному запам’ятовуючому пристрої (пзп)
- •9.2 Послідовні цифрові пристрої
- •9.2.1 Тригери
- •9.2.1.1 Тригери на логічних елементах
- •9.2.1.1.1 Rs - тригери
- •9.2.1.1.1.1 Асинхронні rs - тригери
- •9.2.1.1.1.2 Синхронні rs - тригери
- •9.2.1.1.2 Т-тригери (тригери з лічильним входом)
- •9.2.1.1.3 D - тригери (тригери затримки)
- •9.2.1.1.4 Jk - тригери
- •9.2.1.2 Тригери у інтегральному виконанні
- •9.2.2 Регістри
- •9.2.2.1 Паралельні регістри
- •9.2.2.2 Послідовні (зсуваючі) регістри
- •9.2.2.3 Регістри зсуву
- •9.2.2.4 Послідовно-паралельні і паралельно-послідовні регістри
- •9.2.2.5 Регістри у інтегральному виконанні
- •9.2.3 Лічильники
- •9.2.3.1 Асинхронний двійковий лічильник, що підсумовує, з послідовним перенесенням
- •9.2.3.2 Асинхронний двійковий лічильник, що віднімає, із послідовним перенесенням
- •9.2.3.3 Асинхронні реверсивні двійкові лічильники з послідовним перенесенням
- •9.2.3.4 Синхронний лічильник з наскрізним перенесенням
- •9.2.3.5 Десяткові лічильники
- •9.2.3.6 Лічильники в інтегральному виконанні
- •9.2.4 Подільники частоти
- •9.2.5 Розподілювачі
- •10 Зв'язок мп-ра і омеом з аналоговим об'єктом управління і з пк
- •10.1 Структура типової локальної мікропроцесорної системи управління (лмпсу)
- •10.1.1 Призначення і схемна реалізація окремих вузлів лмпсу
- •10.1.1.1 Аналоговий мультиплексор (ампс)
- •10.1.1.2 Пристрій вибірки-зберігання (пвз)
- •10.1.1.3 Аналого-цифровий перетворювач (ацп)
- •10.1.1.4 Ведена однокристальна мікроЕом (омеом)
- •10.1.1.5 Шинний формувач (шф)
- •10.1.1.6 Регістри (Рг1...Рг3)
- •10.1.1.7 Схеми узгодження рівнів (сур1...Сур3)
- •10.1.1.8 Цифро-аналогові перетворювачі (цап1...Цап3)
- •10.2 Застосування ацп і пвз при введенні аналогової інформації в мпс
- •10.2.1 Розрахунок ацп
- •10.2.2.1 Опис мікросхеми к1113 пв1
- •10.2.2.2 Розрахунок мікросхеми к1113 пв1
- •10.2.2.3 Введення даних від ацп в мпс через ппі в режимі 0
- •10.2.3 Пристрій вибірки і зберігання (пвз)
- •10.2.3.1 Обґрунтування застосування пвз
- •10.2.3.2 Принцип дії, схема й основні параметри пвз
- •Р Рисунок 10.17исунок 10.17
- •10.2.3.3 Функціональні можливості і схема включення мікросхеми пвз к1100ск2 (кр 1100ск2)
- •10.2.4.1Опис мікросхеми max154. Часові діаграми і режими роботи
- •10.2.4.1.1 Опис роботи паралельного 4-х розрядного ацп
- •10.2.4.2 Розрахунок ацп max154
- •10.3 Застосування цап прививодіцифрової інформації з мпс
- •10.3.1 РозрахунокЦап на матриці r-2Rзпідсумовуваннямструмів
- •10.3.2.1 Опис мікросхеми к 572 па1
- •10.3.2.2 Розрахунок цап к 572 па1
- •10.3.3.1 Опис мікросхеми max506
- •10.3.3.2 Розрахунок цап max506
- •10.4 Особливості апаратної і програмної реалізації модуля ацп- цап мпс
- •10.4.1 Апаратний рівень
- •10.4.2 Програмний рівень
- •10.5 Обмін між мп-м (омеом) і пк по послідовному каналузв'язку за допомогою інтерфейсу rs-232с
- •10.5.1 Універсальний асинхронний послідовний програмований приймач – передавач (уапп)
- •10.5.2 Пристрій перетворення рівнів (ппр)
- •10.5.4 Буферний регістр адреси rs– 232с
- •10.5.5 Шинний формувач
- •10.6 Вибір і розрахунок датчиків, нормуючих перетворювачів і фільтрів нижніх частот (фнч)
- •10.6.1 Вибір і розрахунок датчиків і нормуючих перетворювачів
- •10.6.1.1 Вибір датчиків
- •10.6.1.2 Вибір і розрахунок нормуючих перетворювачів
- •10.6.3 Розрахунок фнч
- •10.7 Розробка схеми алгоритму і керуючої програми
- •11 Список літератури
6 Параметри і характеристики цифрових інтегральних мікросхем (імс)
Цифрова мікросхема як функціональний вузол характеризується набором сигналів, що можна розділити на інформаційні (Х1,Х2, ...,Хn - вхідні, Y1,Y2,...,Ym - вихідні) і управляючі (V1, V2, ... , Vk). Кожна конкретна ІМС у відповідності зі своїм функціональним призначенням виконує визначені операції над вхідними сигналами (змінними), а вихідні сигнали являють собою результат цих операцій Yj = F(Х1,Х2, ...,Хn). Операторами F можуть бути як найпростіші логічні перетворення, наприклад І, АБО, НІ, і т.д., так і складні багатофункціональні перетворення, що мають місце, наприклад, у мікропроцесорах, ВІС пам'яті та ін.
Сигнали управління визначають вид операції, режим роботи ІМС, забезпечують синхронізацію, встановлення початкового стану, стробують вхідні і вихідні сигнали, задають адреси, і т.д.
Від функціональної складності ІМС залежить і система її електричних параметрів, які у загальному випадку можуть мати десятки найменувань, причому більшість з параметрів характерні тільки для ІМС якогось одного класу. Тому нижче роздивимося ті параметри і характеристики, які характеризують більшість мікросхем. Надалі при вивченні окремих пристроїв цей перелік у міру необхідності буде розширений.
6.1 Коефіцієнт об'єднання по входу (Коб)
Дорівнює кількості входів логічного елемента. На них надходять логічні змінні, над якими даний елемент виконує логічну операцію. Коб обмежує найбільшу кількість змінних функції, що реалізує даний ЛЕ. При недостатній кількості входів замість одного необхідно використовувати декілька елементів (5.2.4).
6.2 Коефіцієнт розгалуження по виходу (Кроз)
Чисельно дорівнює кількості входів аналогічних елементів, котрими можна одночасно навантажити вихід даного елемента без спотворення передачі інформації. Цей коефіцієнт характеризує навантажувальну спроможність елемента і визначається виконанням його вихідного каскаду. Для різноманітних елементів складає від декількох одиниць до декількох десятків.
6.3 Статичні характеристики
До статичних характеристик належать: вхідна ВАХ, що визначає залежність вхідного струму від вхідної напруги; вихідна ВАХ, що показує зв'язок між вихідними напругою і струмом; передавальна, що визначає залежність вихідної напруги від вхідної [3].
На рисунку 6.1 приведена типова передавальна характеристика інвертора ТТЛ - типу. З її допомогою можна визначити ряд параметрів ЛЕ, наприклад, рівні напруг логічної одиниці (U1), логічного нуля (U0), значення порогових напруг, при яких вихідний сигнал переключається з 1 у 0 і навпаки з 0 у 1, оцінити завадостійкість елемента.
-

Рисунок 6.1
6.4 Завадостійкість
Оцінюється найбільшою напругою статичної завади Uзав, що діє на вході, і яка не викликає помилкового переключення елемента з 1 у 0 або навпаки.
Статичними прийнято називати завади, величина яких залишається постійною протягом часу, що значно перевищує тривалість перехідних процесів у схемі. Причиною появи таких завад у більшості випадків є падіння напруги на провідниках, що з'єднують мікросхеми в пристрої. Найбільш небезпечні завади виникають у шинах живлення. Падіння напруги на “корпусній” шині, різні для різноманітних ІМС, будуть підсумовуватись з вхідними сигналами і можуть призводити до збоїв. Для вилучення подібних ситуацій необхідно уважно ставитися до розташування провідників, що підводять напругу живлення, і збільшувати по можливості їх переріз.
Завадостійкість
можна оцінити по передавальній
характеристиці елемента (рисунок 6.1),
визначивши значення
і
.
