
- •Комп’ютерна електроніка
- •1 Вступ
- •2 Дискретизація аналогових сигналів
- •2.1 Квантування за рівнем
- •2.2 Квантування за часом
- •2.3 Квантування за рівнем і за часом
- •2.3.1 Розмір похибки ацп
- •2.3.2 Вибір величини кроку квантування за часом
- •3 Застосування алгебри логіки (булевої алгебри) при аналізі і синтезі цифрових електронних пристроїв
- •3.1 Визначення і способи задання перемикальних функцій
- •3.4 Базисні логічні функції
- •3.5 Принцип двоїстості булевої алгебри
- •3.6 Основні тотожності булевої алгебри
- •3.7 Основні закони булевої алгебри
- •3.8 Досконала диз’юнктивна нормальна форма (дднф) запису булевих виразів
- •3.9 Диз’юнктивна нормальна форма
- •3.10 Досконала кон’юнктивна нормальна форма (дкнф) запису булевих виразів
- •3.11 Кон’юнктивна нормальна форма (кнф)
- •3.12 Мінімізація логічних функцій
- •3.12.1 Алгебраїчний спосіб мінімізації пф
- •3.12.2 Мінімізація пф із використанням діаграм Вейча (карт Карно)
- •3.12.2.1 Мінімізація пф за допомогою діаграм Вейча
- •3.12.2.1.1 Загальне правило мінімізації
- •3.12.2.1.2 Приклади мінімізації пф за допомогою діаграм Вейча
- •3.12.2.2 Мінімізація пф за допомогою карт Карно
- •4 Логічні елементи
- •4.1 Інвертор (логічний елемент ні)
- •4.2 Кон’юнктор (логічний елемент і)
- •4.3 Диз’юнктор (логічний елемент або)
- •4.4 Повторювач
- •4.7 Виключаюче або
- •4.8 Додавання по модулю два (непарність)
- •4.9 Додавання по модулю два з запереченням (парність)
- •4.10 Еквівалентність
- •4.11 Нееквівалентність
- •4.13 Заборона
- •4.14 Логічні елементи з відкритим колектором
- •4.15 Логічні елементи з третім станом
- •5 Реалізація логічних функцій у різних базисах
- •5.1 Базисні набори ле і їх взаємозв'язок
- •5.2 Реалізація логічних функцій у різноманітних базисах
- •5.2.1 Реалізація елемента “Рівнозначність” (виключаюче або - ні)
- •5.2.2 Реалізація елемента “нерівнозначність” (виключаюче або, сума по модулю два)
- •5.2.3 Реалізація елемента “Заборона”
- •5.2.4 Реалізація багатолітерних логічних функцій на елементах з невеликою кількістю входів
- •6 Параметри і характеристики цифрових інтегральних мікросхем (імс)
- •6.1 Коефіцієнт об'єднання по входу (Коб)
- •6.2 Коефіцієнт розгалуження по виходу (Кроз)
- •6.3 Статичні характеристики
- •6.4 Завадостійкість
- •6.5 Динамічні характеристики і параметри
- •6.6 Вигляд реалізованої логічної функції
- •6.7 Споживані струм і потужність
- •6.8 Вхідні і вихідні струми, напруги
- •6.9 Порогові напруги
- •6.10 Допустимі значення основних параметрів
- •7 Базові логічні елементи
- •7.1 Базовий ттл (ттлш) - елемент і - ні
- •7.2 Базовий езл - елемент або/або-ні
- •7.3 Базовий кмон елемент або-ні
- •8 Генератори тактових імпульсів (гті) на логічних елементах
- •8.1 Гті на двох інверторах
- •8.2 Гті на 3-х інверторах.
- •9 Функціональні пристроїкомп'ютерної (цифрової) електроніки
- •9.1 Комбінаційні цифрові пристрої (кцп)
- •9.1.1 Аналіз і синтез кцп
- •9.1.1.1 Аналіз кцп
- •9.1.1.2 Синтез кцп
- •9.1.2 Типові кцп
- •9.1.2.1 Шифратори та дешифратори
- •9.1.2.1.1 Шифратори двійкового коду
- •9.1.2.1.2 Шифратори двійково-десяткового коду
- •9.1.2.1.3 Дешифратори двійкового коду
- •9.1.2.1.4 Дешифратор bcd - коду всемисегментний код
- •9.1.2.1.4.1 Семисегментні індикатори на світлодіодах
- •9.1.2.2 Мультиплексори й демультиплексори
- •9.1.2.2.1 Мультиплексори
- •9.1.2.2.2 Демультиплексори
- •9.1.2.2.3 Мультиплексори-селектори (мультиплексори-демультиплексори)
- •9.1.2.3 Cуматори і напівсуматори
- •9.1.2.4 Пристрої контролю парності (пкп)
- •9.1.2.5 Цифрові компаратори
- •9.1.3 Використання для проектування кцп мультиплексорів, дешифраторів і постійного запам’ятовуючого пристрою
- •9.1.3.1 Побудова кцп на мультиплексорах
- •9.1.3.2 Побудова кцп на дешифраторах
- •9.1.3.3 Побудова кцп на постійному запам’ятовуючому пристрої (пзп)
- •9.2 Послідовні цифрові пристрої
- •9.2.1 Тригери
- •9.2.1.1 Тригери на логічних елементах
- •9.2.1.1.1 Rs - тригери
- •9.2.1.1.1.1 Асинхронні rs - тригери
- •9.2.1.1.1.2 Синхронні rs - тригери
- •9.2.1.1.2 Т-тригери (тригери з лічильним входом)
- •9.2.1.1.3 D - тригери (тригери затримки)
- •9.2.1.1.4 Jk - тригери
- •9.2.1.2 Тригери у інтегральному виконанні
- •9.2.2 Регістри
- •9.2.2.1 Паралельні регістри
- •9.2.2.2 Послідовні (зсуваючі) регістри
- •9.2.2.3 Регістри зсуву
- •9.2.2.4 Послідовно-паралельні і паралельно-послідовні регістри
- •9.2.2.5 Регістри у інтегральному виконанні
- •9.2.3 Лічильники
- •9.2.3.1 Асинхронний двійковий лічильник, що підсумовує, з послідовним перенесенням
- •9.2.3.2 Асинхронний двійковий лічильник, що віднімає, із послідовним перенесенням
- •9.2.3.3 Асинхронні реверсивні двійкові лічильники з послідовним перенесенням
- •9.2.3.4 Синхронний лічильник з наскрізним перенесенням
- •9.2.3.5 Десяткові лічильники
- •9.2.3.6 Лічильники в інтегральному виконанні
- •9.2.4 Подільники частоти
- •9.2.5 Розподілювачі
- •10 Зв'язок мп-ра і омеом з аналоговим об'єктом управління і з пк
- •10.1 Структура типової локальної мікропроцесорної системи управління (лмпсу)
- •10.1.1 Призначення і схемна реалізація окремих вузлів лмпсу
- •10.1.1.1 Аналоговий мультиплексор (ампс)
- •10.1.1.2 Пристрій вибірки-зберігання (пвз)
- •10.1.1.3 Аналого-цифровий перетворювач (ацп)
- •10.1.1.4 Ведена однокристальна мікроЕом (омеом)
- •10.1.1.5 Шинний формувач (шф)
- •10.1.1.6 Регістри (Рг1...Рг3)
- •10.1.1.7 Схеми узгодження рівнів (сур1...Сур3)
- •10.1.1.8 Цифро-аналогові перетворювачі (цап1...Цап3)
- •10.2 Застосування ацп і пвз при введенні аналогової інформації в мпс
- •10.2.1 Розрахунок ацп
- •10.2.2.1 Опис мікросхеми к1113 пв1
- •10.2.2.2 Розрахунок мікросхеми к1113 пв1
- •10.2.2.3 Введення даних від ацп в мпс через ппі в режимі 0
- •10.2.3 Пристрій вибірки і зберігання (пвз)
- •10.2.3.1 Обґрунтування застосування пвз
- •10.2.3.2 Принцип дії, схема й основні параметри пвз
- •Р Рисунок 10.17исунок 10.17
- •10.2.3.3 Функціональні можливості і схема включення мікросхеми пвз к1100ск2 (кр 1100ск2)
- •10.2.4.1Опис мікросхеми max154. Часові діаграми і режими роботи
- •10.2.4.1.1 Опис роботи паралельного 4-х розрядного ацп
- •10.2.4.2 Розрахунок ацп max154
- •10.3 Застосування цап прививодіцифрової інформації з мпс
- •10.3.1 РозрахунокЦап на матриці r-2Rзпідсумовуваннямструмів
- •10.3.2.1 Опис мікросхеми к 572 па1
- •10.3.2.2 Розрахунок цап к 572 па1
- •10.3.3.1 Опис мікросхеми max506
- •10.3.3.2 Розрахунок цап max506
- •10.4 Особливості апаратної і програмної реалізації модуля ацп- цап мпс
- •10.4.1 Апаратний рівень
- •10.4.2 Програмний рівень
- •10.5 Обмін між мп-м (омеом) і пк по послідовному каналузв'язку за допомогою інтерфейсу rs-232с
- •10.5.1 Універсальний асинхронний послідовний програмований приймач – передавач (уапп)
- •10.5.2 Пристрій перетворення рівнів (ппр)
- •10.5.4 Буферний регістр адреси rs– 232с
- •10.5.5 Шинний формувач
- •10.6 Вибір і розрахунок датчиків, нормуючих перетворювачів і фільтрів нижніх частот (фнч)
- •10.6.1 Вибір і розрахунок датчиків і нормуючих перетворювачів
- •10.6.1.1 Вибір датчиків
- •10.6.1.2 Вибір і розрахунок нормуючих перетворювачів
- •10.6.3 Розрахунок фнч
- •10.7 Розробка схеми алгоритму і керуючої програми
- •11 Список літератури
4.15 Логічні елементи з третім станом
Один із найбільш широко використовуваних способів підключення логічних елементів на спільний вихід заснований на застосуванні в їхніх вихідних ланцюгах електронних буферних схем, спроможних під дією керуючих сигналів або підключати до навантаження вихідний логічний сигнал, що приймає значення 0 або 1, або відключати вихід від навантаження (переводити його в так званий 3-й (високоімпедансний, Z-стан)).
Нижче показані позначення логічного елемента (повторювача) з трьома станами на електричних схемах (рисунок 4.19, а) і принципової схеми його вихідного каскаду, що забезпечує 3 стани вихідного сигналу: логічний 0; логічну 1 і 3-й (Z)-стан.
-
а
б
Рисунок 4.19
У поле
функціонального позначення логічних
елементів з трьома станами є спеціальный
символ
.
Крім основних входів, на які подаються вхідні логічні змінні, подібні елементи мають керуючий вхід: “Вибір кристала” - CS, активним сигналом на якому, як правило, є логічний 0 (рисунок 4.19,а).
Три стани вихідних сигналів забезпечуються управляючими сигналами на базах транзисторів VT1 і VT2 (рисунок 4.19, б):
Одиничний стан - на базі VT1 - одиниця (транзистор - відкритий); на базі VT2 - нуль (транзистор - закритий), і з виходу знімається логічна 1;
Нульовий стан - на базі VT1 - нуль (транзистор закритий); на базі VT2 - одиниця (транзистор - відкритий), і з виходу знімається логічний 0;
Z - стан - на базах VT1 і VT2 - логічні нулі (обидва транзистори закриті) і вихід обірваний від спільної шини (знаходиться у високоімпедансному (Z)-стані).
Елементи з трьома станами широко використовуються у мікропроцесорній техніці для підключення виходів різноманітних пристроїв мікропроцесорної системи до спільної шини.
5 Реалізація логічних функцій у різних базисах
5.1 Базисні набори ле і їх взаємозв'язок
Існує декілька базисних (функціонально повних) наборів логічних елементів, на яких можна реалізовувати будь-яку перемикальну функцію:
1) І, АБО, НІ;
2) І-НІ;
3) АБО-НІ.
Для реалізації ПФ, поданої булевим виразом у ДНФ або КНФ, достатньо трьох ЛЕ: І, АБО, НІ, тому цей набір вважається функціонально повним або базисним (базисом).
На практиці більш широко використовуються базиси І-НІ або АБО-НІ. Це пов'язано з тим, що зменшення номенклатури елементів до одного типу спрощує проектування пристрою і його ремонт. Крім того, наявність у цих елементах інвертора (підсилювача) підвищує навантажувальну спроможність елемента і посилює сигнал.
Використовуючи тотожності і теореми булевої алгебри можна перетворити вирази ПФ, записані у вигляді комбінації функцій І, АБО, НІ, до вигляду, що може бути реалізований елементами базису І-НІ, АБО-НІ. Сказане відбиває таблиця 5.1.
Рисунок 5.1
Функцію І-НІ називають функцією Шеффера (штрихом Шеффера), позначаючи її у вигляді F = A B , а функцію АБО-НІ - функцією Пірса (стрілкою Пірса), позначаючи її у вигляді А В. Базис І-НІ називають базисом Шеффера, а базис АБО-НІ - базисом Пірса.