
- •Комп’ютерна електроніка
- •1 Вступ
- •2 Дискретизація аналогових сигналів
- •2.1 Квантування за рівнем
- •2.2 Квантування за часом
- •2.3 Квантування за рівнем і за часом
- •2.3.1 Розмір похибки ацп
- •2.3.2 Вибір величини кроку квантування за часом
- •3 Застосування алгебри логіки (булевої алгебри) при аналізі і синтезі цифрових електронних пристроїв
- •3.1 Визначення і способи задання перемикальних функцій
- •3.4 Базисні логічні функції
- •3.5 Принцип двоїстості булевої алгебри
- •3.6 Основні тотожності булевої алгебри
- •3.7 Основні закони булевої алгебри
- •3.8 Досконала диз’юнктивна нормальна форма (дднф) запису булевих виразів
- •3.9 Диз’юнктивна нормальна форма
- •3.10 Досконала кон’юнктивна нормальна форма (дкнф) запису булевих виразів
- •3.11 Кон’юнктивна нормальна форма (кнф)
- •3.12 Мінімізація логічних функцій
- •3.12.1 Алгебраїчний спосіб мінімізації пф
- •3.12.2 Мінімізація пф із використанням діаграм Вейча (карт Карно)
- •3.12.2.1 Мінімізація пф за допомогою діаграм Вейча
- •3.12.2.1.1 Загальне правило мінімізації
- •3.12.2.1.2 Приклади мінімізації пф за допомогою діаграм Вейча
- •3.12.2.2 Мінімізація пф за допомогою карт Карно
- •4 Логічні елементи
- •4.1 Інвертор (логічний елемент ні)
- •4.2 Кон’юнктор (логічний елемент і)
- •4.3 Диз’юнктор (логічний елемент або)
- •4.4 Повторювач
- •4.7 Виключаюче або
- •4.8 Додавання по модулю два (непарність)
- •4.9 Додавання по модулю два з запереченням (парність)
- •4.10 Еквівалентність
- •4.11 Нееквівалентність
- •4.13 Заборона
- •4.14 Логічні елементи з відкритим колектором
- •4.15 Логічні елементи з третім станом
- •5 Реалізація логічних функцій у різних базисах
- •5.1 Базисні набори ле і їх взаємозв'язок
- •5.2 Реалізація логічних функцій у різноманітних базисах
- •5.2.1 Реалізація елемента “Рівнозначність” (виключаюче або - ні)
- •5.2.2 Реалізація елемента “нерівнозначність” (виключаюче або, сума по модулю два)
- •5.2.3 Реалізація елемента “Заборона”
- •5.2.4 Реалізація багатолітерних логічних функцій на елементах з невеликою кількістю входів
- •6 Параметри і характеристики цифрових інтегральних мікросхем (імс)
- •6.1 Коефіцієнт об'єднання по входу (Коб)
- •6.2 Коефіцієнт розгалуження по виходу (Кроз)
- •6.3 Статичні характеристики
- •6.4 Завадостійкість
- •6.5 Динамічні характеристики і параметри
- •6.6 Вигляд реалізованої логічної функції
- •6.7 Споживані струм і потужність
- •6.8 Вхідні і вихідні струми, напруги
- •6.9 Порогові напруги
- •6.10 Допустимі значення основних параметрів
- •7 Базові логічні елементи
- •7.1 Базовий ттл (ттлш) - елемент і - ні
- •7.2 Базовий езл - елемент або/або-ні
- •7.3 Базовий кмон елемент або-ні
- •8 Генератори тактових імпульсів (гті) на логічних елементах
- •8.1 Гті на двох інверторах
- •8.2 Гті на 3-х інверторах.
- •9 Функціональні пристроїкомп'ютерної (цифрової) електроніки
- •9.1 Комбінаційні цифрові пристрої (кцп)
- •9.1.1 Аналіз і синтез кцп
- •9.1.1.1 Аналіз кцп
- •9.1.1.2 Синтез кцп
- •9.1.2 Типові кцп
- •9.1.2.1 Шифратори та дешифратори
- •9.1.2.1.1 Шифратори двійкового коду
- •9.1.2.1.2 Шифратори двійково-десяткового коду
- •9.1.2.1.3 Дешифратори двійкового коду
- •9.1.2.1.4 Дешифратор bcd - коду всемисегментний код
- •9.1.2.1.4.1 Семисегментні індикатори на світлодіодах
- •9.1.2.2 Мультиплексори й демультиплексори
- •9.1.2.2.1 Мультиплексори
- •9.1.2.2.2 Демультиплексори
- •9.1.2.2.3 Мультиплексори-селектори (мультиплексори-демультиплексори)
- •9.1.2.3 Cуматори і напівсуматори
- •9.1.2.4 Пристрої контролю парності (пкп)
- •9.1.2.5 Цифрові компаратори
- •9.1.3 Використання для проектування кцп мультиплексорів, дешифраторів і постійного запам’ятовуючого пристрою
- •9.1.3.1 Побудова кцп на мультиплексорах
- •9.1.3.2 Побудова кцп на дешифраторах
- •9.1.3.3 Побудова кцп на постійному запам’ятовуючому пристрої (пзп)
- •9.2 Послідовні цифрові пристрої
- •9.2.1 Тригери
- •9.2.1.1 Тригери на логічних елементах
- •9.2.1.1.1 Rs - тригери
- •9.2.1.1.1.1 Асинхронні rs - тригери
- •9.2.1.1.1.2 Синхронні rs - тригери
- •9.2.1.1.2 Т-тригери (тригери з лічильним входом)
- •9.2.1.1.3 D - тригери (тригери затримки)
- •9.2.1.1.4 Jk - тригери
- •9.2.1.2 Тригери у інтегральному виконанні
- •9.2.2 Регістри
- •9.2.2.1 Паралельні регістри
- •9.2.2.2 Послідовні (зсуваючі) регістри
- •9.2.2.3 Регістри зсуву
- •9.2.2.4 Послідовно-паралельні і паралельно-послідовні регістри
- •9.2.2.5 Регістри у інтегральному виконанні
- •9.2.3 Лічильники
- •9.2.3.1 Асинхронний двійковий лічильник, що підсумовує, з послідовним перенесенням
- •9.2.3.2 Асинхронний двійковий лічильник, що віднімає, із послідовним перенесенням
- •9.2.3.3 Асинхронні реверсивні двійкові лічильники з послідовним перенесенням
- •9.2.3.4 Синхронний лічильник з наскрізним перенесенням
- •9.2.3.5 Десяткові лічильники
- •9.2.3.6 Лічильники в інтегральному виконанні
- •9.2.4 Подільники частоти
- •9.2.5 Розподілювачі
- •10 Зв'язок мп-ра і омеом з аналоговим об'єктом управління і з пк
- •10.1 Структура типової локальної мікропроцесорної системи управління (лмпсу)
- •10.1.1 Призначення і схемна реалізація окремих вузлів лмпсу
- •10.1.1.1 Аналоговий мультиплексор (ампс)
- •10.1.1.2 Пристрій вибірки-зберігання (пвз)
- •10.1.1.3 Аналого-цифровий перетворювач (ацп)
- •10.1.1.4 Ведена однокристальна мікроЕом (омеом)
- •10.1.1.5 Шинний формувач (шф)
- •10.1.1.6 Регістри (Рг1...Рг3)
- •10.1.1.7 Схеми узгодження рівнів (сур1...Сур3)
- •10.1.1.8 Цифро-аналогові перетворювачі (цап1...Цап3)
- •10.2 Застосування ацп і пвз при введенні аналогової інформації в мпс
- •10.2.1 Розрахунок ацп
- •10.2.2.1 Опис мікросхеми к1113 пв1
- •10.2.2.2 Розрахунок мікросхеми к1113 пв1
- •10.2.2.3 Введення даних від ацп в мпс через ппі в режимі 0
- •10.2.3 Пристрій вибірки і зберігання (пвз)
- •10.2.3.1 Обґрунтування застосування пвз
- •10.2.3.2 Принцип дії, схема й основні параметри пвз
- •Р Рисунок 10.17исунок 10.17
- •10.2.3.3 Функціональні можливості і схема включення мікросхеми пвз к1100ск2 (кр 1100ск2)
- •10.2.4.1Опис мікросхеми max154. Часові діаграми і режими роботи
- •10.2.4.1.1 Опис роботи паралельного 4-х розрядного ацп
- •10.2.4.2 Розрахунок ацп max154
- •10.3 Застосування цап прививодіцифрової інформації з мпс
- •10.3.1 РозрахунокЦап на матриці r-2Rзпідсумовуваннямструмів
- •10.3.2.1 Опис мікросхеми к 572 па1
- •10.3.2.2 Розрахунок цап к 572 па1
- •10.3.3.1 Опис мікросхеми max506
- •10.3.3.2 Розрахунок цап max506
- •10.4 Особливості апаратної і програмної реалізації модуля ацп- цап мпс
- •10.4.1 Апаратний рівень
- •10.4.2 Програмний рівень
- •10.5 Обмін між мп-м (омеом) і пк по послідовному каналузв'язку за допомогою інтерфейсу rs-232с
- •10.5.1 Універсальний асинхронний послідовний програмований приймач – передавач (уапп)
- •10.5.2 Пристрій перетворення рівнів (ппр)
- •10.5.4 Буферний регістр адреси rs– 232с
- •10.5.5 Шинний формувач
- •10.6 Вибір і розрахунок датчиків, нормуючих перетворювачів і фільтрів нижніх частот (фнч)
- •10.6.1 Вибір і розрахунок датчиків і нормуючих перетворювачів
- •10.6.1.1 Вибір датчиків
- •10.6.1.2 Вибір і розрахунок нормуючих перетворювачів
- •10.6.3 Розрахунок фнч
- •10.7 Розробка схеми алгоритму і керуючої програми
- •11 Список літератури
4.9 Додавання по модулю два з запереченням (парність)
Елемент реалізує логічну функцію
F= A
B
C .
(4.9)
Нижче показані його позначення на електричних схемах (рисунок 4.10 ) і таблиця істинності ( таблиця 4.8 ).
-
Рисунок 4.10
Таблиця 4.8
-
N набору
С
В
А
F
0
0
0
0
1
1
0
0
1
0
2
0
1
0
0
3
0
1
1
1
4
1
0
0
0
5
1
0
1
1
6
1
1
0
1
7
1
1
1
0
Елемент формує суму по модулю два, що потім інвертується на виході. Якщо при підсумовуванні число одиниць парне, то функція дорівнює 1, у протилежному випадку - F = 0.
4.10 Еквівалентність
Елемент реалізує логічну функцію
__ __ __
F = A. B. C + A. B. C . (4.10)
Нижче показані його позначення на електричних схемах (рисунок 4.11) і таблиця істинності (таблиця 4.9).
-
Рисунок 4.11
Таблиця 4.9
-
N набору
С
В
А
F
0
0
0
0
1
1
0
0
1
0
2
0
1
0
0
3
0
1
1
0
4
1
0
0
0
5
1
0
1
0
6
1
1
0
0
7
1
1
1
1
Функція дорівнює одиниці, коли усі змінні однакові (дорівнюють одиниці або нулю). У протилежному випадку - F = 0.
4.11 Нееквівалентність
Елемент реалізує логічну функцію
__
__ __
F = A. B. C + A. B. C . (4.11)
Нижче показані його позначення на електричних схемах (рисунок 4.12) і таблиця істинності (таблиця 4.10).
-
Рисунок 4.12
Таблиця 4.10
-
N набору
С
В
А
F
0
0
0
0
0
1
0
0
1
1
2
0
1
0
1
3
0
1
1
1
4
1
0
0
1
5
1
0
1
1
6
1
1
0
1
7
1
1
1
0
Функція дорівнює одиниці, коли змінні не однакові. В протилежному випадку - F = 0.
Якщо число логічних змінних дорівнює двом , то логічна функція і елемент “нееквівалентність” збігаються з елементами “додавання по модулю два” і “ виключаюче АБО ” (таблиці 4.6, 4.7).
4.12 I - АБО - НІ
Елемент реалізує більш складну логічну функцію, булевий вираз якої має вигляд :
__________ |
|
F=A. B + C. D . |
(4.12) |
Нижче показані його позначення на електричних схемах (рисунок 4.13) і таблиця істинності (таблиця 4.11).
-
Рисунок 4.13
Таблиця 4.11
-
N набору
D
С
В
А
F
0
0
0
0
0
1
1
0
0
0
1
1
2
0
0
1
0
1
3
0
0
1
1
0
4
0
1
0
0
1
5
0
1
0
1
1
6
0
1
1
0
1
7
0
1
1
1
0
8
1
0
0
0
1
9
1
0
0
1
1
10
1
0
1
0
1
11
1
0
1
1
0
12
1
1
0
0
0
13
1
1
0
1
0
14
1
1
1
0
0
15
1
1
1
1
0