
- •9 Функциональные устройства компьютерной (цифровой) электроники 3
- •9 Функциональные устройства компьютерной (цифровой) электроники
- •9.1 Комбинационные цифровые устройства (кцу)
- •9.1.1 Анализ и синтез кцу
- •9.1.1.1 Анализ кцу
- •9.1.1.2 Синтез кцу
- •9.1.2 Типовые кцу
- •9.1.2.1 Шифраторы и дешифраторы
- •9.1.2.1.1 Шифраторы двоичного кода
- •9.1.2.1.2 Шифраторы двоично-десятичного кода
- •9.1.2.1.3 Дешифраторы двоичного кода
- •9.1.2.1.4 Дешифратор bcd-кода в семисегментный код
- •9.1.2.1.4.1 Семисегментные индикаторы на светодиодах
- •9.1.2.2 Мультиплексоры и демультиплексоры
- •9.1.2.2.1 Мультиплексоры
- •9.1.2.2.2 Демультиплексоры
- •9.1.2.2.3 Мультиплексоры–селекторы (мультиплексоры-демультиплексоры)
- •9.1.2.3 Сумматоры и полусумматоры
- •9.1.2.4 Устройства контроля четности (укч)
- •9.1.2.5 Цифровые компараторы
- •9.1.3 Использование для проектирования кцу мультиплексоров, дешифраторов и постоянных запоминающих устройств
- •9.1.3.1 Построение кцу на мультиплексорах
- •9.1.3.2 Построение кцу на дешифраторах
- •9.1.3.3 Построение кцу на постоянном запоминающем устройстве (пзу)
- •9.2 Последовательностные цифровые устройства
- •9.2.1 Триггеры
- •9.2.1.1 Триггеры на логических элементах
- •9.2.1.1.1 Rs - триггеры
- •9.2.1.1.1.1 Асинхронные rs - триггеры
- •9.2.1.1.1.2 Синхронные rs - триггеры
- •9.2.1.1.2 Т-триггеры (триггеры со счетным входом)
- •9.2.1.1.3 D-триггеры (триггеры задержки)
- •9.2.1.1.4 Jk-триггеры
- •9.2.1.2 Триггеры в интегральном исполнении
- •9.2.2 Регистры
- •9.2.2.1 Параллельные регистры
- •9.2.2.2 Последовательные (сдвигающие) регистры
- •9.2.2.3 Регистры сдвига
- •9.2.2.4 Последовательно-параллельные и параллельно-последовательные регистры
- •9.2.2.5 Регистры в интегральном исполнении
- •9.2.3.1 Асинхронный суммирующий двоичный счетчик с последовательным переносом
- •9.2.3.2 Асинхронный вычитающий двоичный счетчик с последовательным переносом
- •9.2.3.3 Асинхронные реверсивные двоичные счетчики с последовательным переносом
- •9.2.3.4 Синхронный счетчик со сквозным переносом
- •9.2.3.5 Десятичные счетчики
- •9.2.3.6 Счетчики в интегральном исполнении
- •9.2.4 Делители частоты
- •9.2.5 Распределители
9.2.1.1.3 D-триггеры (триггеры задержки)
Содержат информационный (D) вход и тактовый (синхро, С) вход (рисунок 9.36).
а |
б |
Рисунок 9.36 |
Существуют однотактные D-триггеры (рисунок 9.36, а), которые переключаются потенциалом или импульсом на тактовом входе, и двухтактные D-триггеры, которые переключаются динамическим сигналом (перепадом), например, из 1 в 0 (рисунок 9.36, б).
Ниже показаны: принципиальная схема (рисунок 9.37, а) и временные диаграммы работы (рисунок 9.37, б) однотактного D-триггера, выполненного на однотактном синхронном RS-триггере (RSC-триггере - DD1) и логическом элементе DD2.
а |
б |
Рисунок 9.37 |
В момент прихода тактового импульса D-триггер переключается в состояние, определяемое сигналом на информационном входе D, т.е. схема запоминает сигнал на входе D в момент поступления синхроимпульса (Qt+1 = D) и хранит его до следующего тактового импульса. Задержка равна интервалу времени между моментами прихода информационного сигнала на D-вход и поступлением синхросигнала на С-вход: tзад1 = t2 - t1; tзад2 = t4 - t3 (рисунок 9.37, б). D-триггеры широко применяются в качестве элементов памяти, способных хранить 1 бит информации.
Ниже показаны: обозначение на электрических схемах (рисунок 9.38, а) и принципиальная схема (рисунок 9.38, б) двухтактного D-триггера, переключающегося перепадом из 1 в 0 на динамическом синхровходе С.
а |
б |
в | |
Рисунок 9.38 |
Триггер выполнен на основе двух однотактных RSC-триггеров (DD1, DD2) и двух инверторов (DD3, DD4).
D-триггер можно использовать в качестве триггера со счетным входом (Т-триггера), если соединить его выводы как показано на рисунке 9.38, в.
9.2.1.1.4 Jk-триггеры
Является наиболее универсальным среди синхронных триггеров.
Ниже показаны: обозначение на электрических схемах (рисунок 9.40, а), принципиальная схема (рисунок 9.40, б), таблица истинности (таблица 9.13) и временные диаграммы работы (рисунок 9.40, в) двухтактного синхронного JK-триггера, переключающегося перепадом из 1 в 0 на динамическом синхровходе С.
а |
б |
в | |
Рисунок 9.40 |
Таблица 9.13 | ||||
№ набора |
J |
K |
C |
Qt+1 |
0 |
0 |
0 |
|
Qt |
1 |
0 |
1 |
|
0 |
2 |
1 |
0 |
|
1 |
3 |
1 |
1 |
|
|
Рассмотрим работу
JK-триггера. Исходное состояние схемы -
нулевое (UQ
= 0) (рисунок
9.40, в). При поступлении среза первого
тактового импульса (момент t1)
сигнал на J-входе
равен 1, а на К-входе
- 0. Поэтому триггер переключается в
единичное состояние. Срезом второго
тактового импульса схема переключается
в нулевое состояние (момент t2),
т.к. в это время J=0, а К=1. В момент t3
оба управляющих сигнала J=K=0, поэтому
состояние схемы не изменяется (Qt+1
= Qt).
При поступлении среза 4-го синхроимпульса
(момент t4)
J=K=1, поэтому триггер переключается в
положение, противоположное исходному:
На основе универсального JK-триггера может быть построен ряд других триггеров.
Синхронный RS-триггер. Отождествим J=S и K=R. При запрете комбинации J=S=1 и K=R=1 таблица 9.13 сводится к таблице истинности RS-триггера (таблица 9.11). Поэтому рассмотренная схема (рисунок 9.40) может использоваться в качестве двухтактного синхронного RS-триггера.
Счетный Т-триггер. В нем используется только 4-я строка таблицы 9.13. Для этого входы J и K присоединяются к потенциалу, соответствующему логической единице: J=K=1 (рисунок 9.41, а).
а |
б |
Рисунок 9.41 |
D-триггер.
В этом триггере
,
т.е. помимо тактового имеется только
один входD
(рисунок 9.41, б). Из таблицы 9.13 (2-я и 3-я
строки) видно, что в D-триггере Qt+1
= D, т.е.
последний запоминает сигнал на входе
D
в момент среза тактового импульса и
хранит его до следующего синхросигнала.