
- •Часть 4. Локальное взаимодействие процессов
- •Глава 16. Блокирование записей 89
- •12.2. Процессы, потоки и общий доступ к информации
- •12.3. Живучесть объектов ipc
- •12.4. Пространства имен
- •12.5. Действие команд fork, exec и exit на объекты ipc
- •12.6. Комментарии к примерам ipc
- •12.7. Выводы по главе 12
- •12.8. Упражнения по главе 12
- •Глава 13. Именованные и неименованные каналы
- •13.1. Введение
- •13.2. Приложение типа клиент-сервер
- •13.3. Программные каналы
- •13.4. Функции popen и pclose
- •13.5. Именованные каналы (fifo)
- •13.6. Некоторые свойства именованных и неименованных каналов
- •13.7. Один сервер, несколько клиентов
- •13.8. Последовательные и параллельные серверы
- •13.9. Ограничения программных каналов и fifo
- •13.10. Выводы по главе 13
- •13.11. Упражнения по главе 13
- •Глава 14. Программные потоки
- •14.1. Введение
- •14.2. Концепция потоков
- •14.3. Идентификация потоков
- •14.4. Создание потока
- •14.5. Завершение потока
- •Функции управления процессами и потоками
- •14.6. Установка атрибутов потока
- •14.7. Реентерабельность
- •Альтернативные версии функций, безопасные в многопоточной среде
- •14.8. Локальные данные потоков
- •14.9. Принудительное завершение потоков
- •Некоторые точки выхода, определенные стандартом Posix.1
- •14.10. Потоки и сигналы
- •14.11. Выводы по главе 14
- •14.12. Упражнения по главе 14 Глава 15. Средства синхронизации потоков
- •15.1. Введение
- •15.2. Взаимные исключения: установка и снятие блокировки
- •15.2.1. Схема производитель-потребитель
- •15.2.2. Блокирование и опрос
- •15.2.3. Предотвращение тупиковых ситуаций
- •15.3. Условные переменные
- •15.3.1. Ожидание и сигнализация
- •15.3.2. Исключение состояния гонок
- •15.4. Блокировки чтения-записи
- •15.5. Атрибуты средств синхронизации потоков
- •15.5.1. Атрибуты взаимных исключений
- •Поведение взаимных исключений различных типов
- •15.5.2. Атрибуты условных переменных
- •15.5.3. Атрибуты блокировок чтения-записи
- •15.6. Выводы по главе 15
- •15.7. Упражнения по главе 15
- •Глава 16. Блокирование записей
- •16.1. Введение
- •16.2. Блокирование записей и файлов
- •16.3. Блокирование записей с помощью fcntl по стандарту Posix
- •16.4. Рекомендательная блокировка
- •16.5. Обязательная блокировка
- •16.6. Приоритет чтения и записи Выводы по главе 16
- •Упражнения по главе 16 Глава 17. System V ipc
- •17.1. Введение
- •17.2. Ключи типа key_t и функция ftok
- •17.3. Структура ipc_perm
- •17.4. Создание и открытие каналов ipc
- •17.5. Разрешения ipc
- •17.6. Программы ipcs и ipcrm
- •17.7. Ограничения ядра
- •17.8. Выводы по главе 17
- •17.9. Упражнения по главе 17
- •Глава 18. Очереди сообщений System V
- •18.1. Введение
- •18.2. Функция msgget
- •18.3. Функция msgsnd
- •18.4. Функция msgrcv
- •18.5. Функция msgctl
- •18.6. Пример программы клиент-сервер
- •18.7. Мультиплексирование сообщений
- •18.7.1. Пример: одна очередь на приложение
- •18.7.2. Пример: одна очередь для каждого клиента
- •18.8. Ограничения, накладываемые на очереди сообщений
- •18.9. Выводы по главе 18
- •18.10. Упражнения по главе 18
- •Глава 19. Семафоры System V
- •19.1. Введение
- •19.2. Функция semget
- •19.3. Функция semop
- •19.4. Функция semctl
- •19. . Ограничения семафоров System V
- •19. . Выводы по главе 19
- •19. . Упражнения по главе 19 Глава 20. Введение в разделяемую память
- •20.1. Введение
- •20.2. Функции mmap, munmap и msync
- •20.3. Увеличение счетчика в отображаемом в память файле
- •20.4. Неименованное отображение в память
- •20.5. Обращение к объектам, отображенным в память
- •20.6. Выводы по главе 20
- •20.7. Упражнения по главе 20
- •Глава 21. Разделяемая память System V
- •21.1. Введение
- •21.2. Функция shmget
- •21.3. Функция shmat
- •21.4. Функция shmdt
- •21.5. Функция shmctl
- •21.6. Ограничения, накладываемые на разделяемую память
- •21.7. Выводы по главе 21
- •21.8. Упражнения по главе 21
15.6. Выводы по главе 15
В этой главе обсудили проблемы синхронизации потоков. Были рассмотрены три основных механизма синхронизации – взаимные исключения, условные переменные и блокировки чтения-записи, а также их применение для организации доступа к совместно используемым ресурсам.
Взаимные исключения используются для защиты критических областей кода, запрещая его одновременное выполнение несколькими потоками. В некоторых случаях потоку, заблокировавшему взаимное исключение, требуется дождаться выполнения какого-либо условия для продолжения действий. В этом случае используется ожидание сигнала по условной переменной. Условная переменная всегда связывается с каким-либо взаимным исключением. Функция pthread_cond_wait, приостанавливающая работу процесса, разблокирует взаимное исключение перед остановкой работы и заново блокирует его при возобновлении работы процесса спустя некоторое время. Сигнал по условной переменной передается каким-либо другим потоком, и этот поток может разбудить либо только один произвольный поток из множества ожидающих (pthread_cond_signal), либо все их одновременно (pthread_cond_broadcast).
Взаимные исключения и условные переменные могут быть статическими. В этом случае они инициализируются также статически. Они могут быть и динамическими, что требует динамической инициализации. Динамическая инициализация дает возможность указать атрибуты, в частности, атрибут совместного использования несколькими процессами, что необходимо, если взаимное исключение или условная переменная находится в разделяемой этими процессами памяти.
Блокировки чтения-записи позволяют лучше распараллелить работу с данными, чем обычные взаимные исключения, если защищаемые данные чаще считываются, чем изменяются. Функции для работы с этими блокировками определены стандартом Unix 98, их мы и описываем в этой главе. По виду эти функции аналогичны функциям для работы со взаимными исключениями.
15.7. Упражнения по главе 15
15.1. Измените программу из листинга 11.3таким образом, чтобы она корректно передавала структуру данных между потоками.
15.2. Реализуйте
Глава 16. Блокирование записей
16.1. Введение
Блокировки чтения-записи, описанные в предыдущей главе, представляют собой хранящиеся в памяти переменные типа pthread_rwlock_t. Эти переменные могут использоваться потоками одного процесса (этот режим работы установлен по умолчанию) либо несколькими процессами при условии, что переменные располагаются в памяти, разделяемой этими процессами, и при их инициализации был установлен атрибутPTHREAD_PROCESS_SHARED.
В этой главе описан усовершенствованный тип блокировки чтения-записи, который может использоваться родственными и неродственными процессами при совместном доступе к файлу. Обращение к блокируемому файлу осуществляется через его дескриптор, а функция для работы с блокировкой называется fcntl. Такой тип блокировки обычно хранится в ядре, причем информация о владельце блокировки хранится в виде его идентификатора процесса. Таким образом, блокировки записейfcntlмогут использоваться только несколькими процессами, но не отдельными потоками одного процесса.
В этой главе мы в первый раз встретимся с нашим примером на увеличение последовательного номера. Рассмотрим следующую ситуацию, с которой столкнулись, например, разработчики спулера печати для Unix (команда lprв BSD иlpв System V). Процесс, помещающий задания в очередь печати для последующей их обработки другим процессом, должен присваивать каждому из них уникальный последовательный номер. Идентификатор процесса, уникальный во время его выполнения, не может использоваться как последовательный номер, поскольку задание может просуществовать достаточно долго для того, чтобы этот идентификатор был повторно использован другим процессом. Процесс может также отправить на печать несколько заданий, каждому из которых нужно будет присвоить уникальный номер. Метод, используемый спулерами печати, заключается в том, чтобы хранить очередной порядковый номер задания для каждого принтера в отдельном файле. Этот файл содержит всего одну строку с порядковым номером в формате ASCII. Каждый процесс, которому нужно воспользоваться этим номером, должен выполнить следующие три действия:
Считать порядковый номер из файла.
Использовать этот номер.
Увеличить его на единицу и записать обратно в файл.
Проблема в том, что пока один процесс выполняет эти три действия, другой процесс может параллельно делать то же самое. В итоге возникнет полный беспорядок с номерами, как мы увидим в следующих примерах.
Таким образом, процессу нужно заблокировать файл, чтобы никакой другой процесс не мог получить к нему доступ, пока первый выполняет свои три действия.