
- •Лабораторная работа №2 Измерение постоянного напряжения и силы электрического тока.
- •Теоретические сведения
- •1.3. Классификация погрешности измерений
- •2. Погрешности измерения напряжения и тока.
- •2.1. Измерение напряжения источника
- •2.3. Измерение напряжения на участке цепи
- •3. Программа работы:
- •3.1.2. Измерить эдс источника питания прибором щ4313.
- •3.2. Измерение силы электрического тока в цепи (прибором щ4313)
- •4. Обработка результатов измерений
- •4.2. Обработка результатов измерения напряжения
- •4.3. Обработка результатов измерения тока
- •5. Сделать выводы
Лабораторная работа №2 Измерение постоянного напряжения и силы электрического тока.
Цель работы: ознакомиться с измерительными приборами, изучить методику измерений постоянных напряжений и токов, определения погрешностей и обработки результатов эксперимента.
Теоретические сведения
Виды измерительных приборов
Измерительные приборы разнообразны по назначению, принципу действия, метрологическим и эксплуатационным характеристикам. По форме представления измерительной информации их подразделяют на аналоговые и цифровые.
Аналоговые приборы бывают электромеханическими и электронными. Электромеханический прибор состоит из измерительной цепи 1, измерительного механизма 2 и отсчетного устройства 3. Измерительная цепь 1 служит для преобразования измеряемой физической величины Х (напряжения, силы тока, мощности и т.п.) в некоторую промежуточную электрическую величину Х1 (ток или напряжение), функционально связанную с величиной Х и непосредственно воздействующую на измерительный механизм 2 (делитель напряжения, шунт). Отсчетное устройство 3 содержит шкалу с делениями и указатель (механический – стрелка или световой – пятно). Обобщенная структурная схема такого прибора показана на рис.1.
Рис.1
В целях повышения чувствительности прибора, расширения диапазона измерений величин в сторону малых значений измерительная цепь содержит электронные узлы. Такие приборы, в отличие от обычных аналоговых приборов прямого преобразования, называют электронными.
Цифровым называется прибор, у которого выходной сигнал является цифровым, т.е. содержит информацию о значении измеряемой величины, закодированную в цифровом коде. Структура цифрового прибора во входной части подобна структуре электронного аналогового прибора. Необходимым элементом каждого цифрового измерительного прибора является аналого-цифровой преобразователь (АЦП). АЦП – это измерительное устройство, которое осуществляет автоматическое преобразование размера выходной величины (преимущественно напряжения) входного преобразователя в её цифровое (численное) значение. На выходе цифрового прибора используется цифровое отсчетное устройство, с помощью которого через дешифратор результат измерения представляется в виде цифр и других знаков.
При измерении часто используются приборы, называемые мультиметрами, предназначенные для измерений в различных диапазонах нескольких электрических величин: постоянных и переменных тока и напряжения, электрического сопротивления и т.д.
Вольтметры
Аналоговые вольтметры постоянного и переменного периодического напряжения строят на базе измерительных механизмов различных типов. Измерительный механизм (ИМ) имеет следующие характеристики: Rм – сопротивление механизма, Ім – ток полного отклонения механизма и следовательно, напряжение полного отклонения стрелки механизма.
.
Если измеряемое постоянное напряжение превышает Uм (Ux>Uм), то включают масштабный преобразователь (делитель) измеряемого напряжения (рис.2). Тогда конечное значение шкалы вольтметра будет Uк = Uм ∙Кмп.
Рис. 2. Электромеханический вольтметр постоянного напряжения
Недостатками вольтметра постоянного напряжения будут малое сопротивление между зажимами вольтметра Rv и недостаточная чувствительность.
Электронный аналоговый вольтметр имеет большее Rv и большую чувствительность за счёт включения электронного масштабного преобразователя с Кмп ≥ 1 (рис. 3).
Рис. 3. Электронный вольтметр постоянного напряжения
Амперметры
Электрический ток в цепи может быть измерен прямыми или косвенными методами. При прямом измерении постоянного тока используется измерительный механизм, имеющий ток полного отклонения Iм и сопротивление Rм. Расширение шкалы (рис.8). до значения Iх производится за счёт включения шунта, сопротивление которого выбирают из условия:
Рис. 5. Расширение шкалы амперметра
При косвенном методе измерения значение тока с помощью измерительного преобразователя преобразуют в другую физическую величину, значение которой измеряют. Так при преобразовании значения измеряемого тока в напряжение используют вольтметры, шкала которого градируется в единицах тока.
При Rш << Rv измеряемое
значение тока определится
.
Рис. 6. Косвенное измерение тока.
Виды измерений
Измерение тока и напряжения в электрической цепи проводят в диапазоне частот от 0 Гц до 1 ГГц. На более высоких частотах эти величины теряют свою однозначность в линии передачи и в её поперечном сечении. По этим причинам на сверхвысоких частотах предпочитают измерять мощность, а не ток и напряжение.
С точки зрения получения значения измеряемой величины по результатам первичных измерений различают прямые и непрямые (косвенные) измерения.
Прямое измерение – это измерение, при котором значение величины Х получают непосредственно по показанию соответствующего прибора Хп; без дополнительных расчетов.
Х= Хп.
Примеры прямых измерений: измерение силы тока – амперметром, напряжения – вольтметром и т.д. При непрямом (косвенном) методе измерения величины Х определяют по результатам прямых измерений величин у1, у 2, … у п, которые связаны с нею определенной функциональной зависимостью.
Х = f (у 1, у 2,… у п)