
lab_fraktaly / лаб фракталы / Лаб_4 / Множество Мандельброта_3
.doc1. Множества Жюлиа
Будем рассматривать последовательности комплексных чисел {Zn}. Возьмем произвольное комплексное число c. Теперь для любого комплексного числа k рассмотрим последовательность {Zn(k)}: Z0 = k, Zi+1= Zi2 + c Зададим себе вопрос: сходится ли Zn к нулю или стремится к бесконечности при n стремящемся к бесконечности? Пусть J – множество всех комплексных чисел {k}, таких что {Zn(k)}стремится к 0, при n стремящемся к бесконечности. Если теперь мы возьмем все такие kи отобразим их на комплексной плоскости, то получим множество Жюлиа. Меняя c, мы получим бесконечный набор фантастических само подобных образов – множеств Жюлиа.
2. Множество Мандельброта
Рассмотрим набор множеств Жюлиа и зададимся вопросом: связно ли данное конкретное множество Жюлиа? Пусть M – множество всех множеств Жюлиа, которые связны. Это множество и называется множеством Мандельброта. Теперь возьмем любое множество Жюлиа J, и комплексное число c, которое его породило. Если J содержится в M, то изобразим точку черным на комплексной плоскости, в противном случае белым. Это и дает нам того “своеобразного снеговика“, которого вы уже наверное видели миллион раз. Его - то мы и будем генерировать. К счастью, есть более легкий путь изображения множества Мандельброта, чем рисование каждого множества Жюлия и выяснения, связно ли оно. Наш метод будет очень близок к построению множеств Жюлиа. Опять рассмотрим итерационную последовательность для любого k, и выясним, сходится ли она к нулю. Zi+1= Zi2 + c Заметим, что c здесь уже не константа. Для любой точки комплексной плоскости мы c присваиваем значение k и выполняем итерации. Этот метод, как ни странно, дает нам то же изображение множества Мандельброта. Итак, алгоритм:
For each point kon the complex plane do:
let x=0.
repeat infinite times:
x=x^2+k.
end repeat
if x goes to infinity,
k is not
in the set. Color is white.
else
k is in
the set. Color is black.
Понятно, что бесконечных циклов быть не должно. Поэтому возьмем некоторое большое число I и проитерируем I раз. Чем большее I мы взяли, тем, понятнее, точнее ответ мы получим. Из практики, число 4000 дает довольно хороший результат. Да, но 4000 раз “крутить“ цикл для каждого пиксела изображения, это многовато. К счастью, мы можем воспользоваться результатами многолетней работы математиков в этой области. Оказывается, если в любой конкретный момент вычислений, для k расстояние от zi(k) начала координат больше 2, то мы можем принять, что данная {Zn(k)} уйдет в бесконечность (При сравнении: расстояние < 2, поэтому его квадрат меньше 4 и корень извлекать не нужно). Итак, теперь наш алгоритм выглядит так:
For each point k in the complex plane do:
let x=0.
repeat 4000 times
let x=x^2+k
if x^2 > 4 then Color it white
Break.
end repeat
if we reached 4000 then
Color
it black.
Этот метод дает нам черно-белое изображение множества Мандельброта. Теперь надо подумать о том, как сделать его разноцветным.
3. Цветное изображение
Если точка принадлежит множеству Мандельброта, то с ней все ясно – рисуем ее черным. Но как быть с точками, не принадлежащими множеству? Общепринятый способ выбора цвета для них – это выбирать цвет в соответствии с тем, как быстро {Zn(k)} стремится к бесконечности (на какой итерации мы ее исключаем из рассмотрения). Например, точка, для которой расстояние до начала координат больше 2 уже на третьей итерации, должна быть почти белой, а та точка, которая “продержалась“ до 3995 итерации – почти черной. Перепишем алгоритм для изображения в градациях серого:
For each point k in the complex plane do:
let x:=0.
for i:=0 to 4000
let x=x^2+k
if ( |x|^2 > 4) then Color point k color i
Break;
end if
end for
if (i=4000)
Color
point k black.
end if
Конечно, просто рисовать точку цветом i мы не можем. Считая, что у нас есть только 256 градаций серого, а i меняется до 4000. Нам надо как-то отображать i на доступный нам диапазон цветов. Эту проблему мы оставляем вам. После того, как мы получили приличное изображение в градациях серого, очень легко чуть изменить алгоритм для получения цветного изображения. Например, в изображении в градациях серого, если точка вышла из области на n-ой, вы можете рисовать ее цветом (n, n, n). Можете попробовать и что-нибудь поинтереснее типа (n, 255 – n, 50 mod n * 3). Оставляем простор для вашей фантазии. И последнее: обычно, все множество Мандельброта расположено от -2 до 0.5 по действительной оси и от –1.25 до 1.25 по мнимой оси. Ваша программа не должна тестировать точки далеко за пределами этой области.