
- •3.1. Контактные резистивные преобразователи
- •3.2. Реостатные и потенциометрические преобразователи
- •3.3. Электромагнитные первичные преобразователи
- •3.4. Емкостные первичные преобразователи
- •3.5. Пьезоэлектрические преобразователя
- •3.6. Тензометрические преобразователи
- •3.7. Оптические преобразователя
Лекция 3 4 часа
Первичные преобразователи (датчики)
Важнейшими элементами систем управления являются датчики, предназначенные для получения количественной информации о подлежащих измерению механических, тепловых, оптических и других величинах.
Так как системы управления строятся в основном на основе I электронных регуляторов, то при измерении любых величин чаще 1 других применяются электрические средства измерений, обладающие следующими преимуществами:
простотой изменения чувствительности в широком диапазоне значений измеряемой величины за счет использования усилителей электрических сигналов;
малой инерционностью электрической аппаратуры, позволяющей использовать одни и те же средства измерений для процессов, протекающих во времени в широком диапазоне скоростей;
практически мгновенной (со скоростью света) передачей сигнала на значительные расстояния, упрощающей замеры в недоступных местах и позволяющей одновременный замер большого количества величин разной физической природы на больших расстояниях.
Датчики обычно классифицируются и получают названия по измеряемой ими величине и параметру, в который преобразуются сигналы чувствительного элемента, например индуктивный датчик перемещения преобразует измеряемое перемещение объекта в изменение индуктивности и реактивного сопротивления дросселя. Измерение есть операция сравнения измеряемой физической величины с другой величиной того же рода, принятой за единицу.
Измерительное преобразование представляет собой преобразование значения одной физической величины в значение другой физической величины, функционально с ней связанной. Например, в термометре температура преображается в длину столбика ртути или спирта, при этом функциональной связью между этими величинами является закон теплового расширения жидкостей.
Многие неэлектрические величины удобно предварительно преобразовать в механическое перемещение, после чего с помощью датчика перемещения получить электрический сигнал. Например, давление газа или жидкости можно определить замером перемещения упругой мембраны. Поэтому в автоматике широкое распространение получили датчики перемещения.
Измерительный прибор (рис. 3.1, а), как правило, состоит из Первичного преобразователя (датчика Д), указателя или регистратора (УК), представляющего измеряемую величину в удобнойдля использования форме, ч измерительного устройства (ИУ), осуществляющего преобразование выходного сигнала датчика во входной сигнал указателя. Например, при измерении температуры можно в качестве датчика использовать терморезистор (резистор, меняющий свое сопротивление при изменении температуры), в качестве указателя можно взять амперметр с соответствующей градуировкой; измерительным устройством здесь будет электрическая схема контроля изменения сопротивления терморезистора, включающая измерительный мост М и усилитель УС. Таким образом, измеряемая величина подвергается в измерительном приборе серии преобразований.
Условия на реальном объекте измерения обычно значительно более жесткие, чем в месте регистрации (повышенная температура, вибрации, влажность, пыль, недостаток места). Поэтому в точке, в которой необходимо провести измерение, размещается минимум преобразователей, достаточный для фиксации значения измеряемой величины и преобразования его в форму, пригодную для передачи из зоны объекта в более благоприятную зону (хотя бы на расстояние нескольких метров), где размещается измерительное устройство.
Датчиком измерительного прибора называется совокупность преобразователей, размещаемых непосредственно на объекте измерения и удовлетворяющих, как правило, более жестким эксплуатационным требованиям. Указатель, регистратор, устройство отображения информации должны быть размещены там, где используются результаты измерения, например на пульте оператора При создании указателей основным требованием является удобство использования результатов замеров.
Раздельное конструктивное исполнение датчиков, измерительных устройств и указателей в совокупности со следованием стандартам соответствующих входных и выходных величин этих элементов обеспечивает гибкость в применении, простой ремонт, универсальность и взаимозаменяемость. Обычно датчик состоит из двух преобразователей: предварительного, воспринимающего измеряемую величину (шуп, рычаг) без перевода ее в другую форму, и основного, предназначенного для преобразования измеряемой величины в электрический сигнал.
Рис. 3.1. Структура измерительного прибора
3.1. Контактные резистивные преобразователи
Контактными называются измерительные преобразователи, в которых измеряемое механическое перемещение преобразуется в замкнутое или разомкнутое состояние контактов, управляющих электрической цепью. При этом естественной входной величиной является пространственное перемещение, выходной величиной — ток в цепи, а характеристика имеет релейный характер.
Так как сопротивление контактного датчика меняется скачком и может принимать одно из двух значений, этот датчик является дискретным. Так как под действием входной величины меняется сопротивление датчика, он является параметрическим.
Простейший однопредельный контактный преобразователь (рис. 3.2, а) имеет одну пару контактов 1 и 2, замыкание которых произойдет при перемещении вверх штока 5. При этом активное сопротивление между контактами упадет от бесконечности до очень малого значения контактного сопротивления. Конструктивно шток устанавливается в направляющие 4 и прижимается пружиной 6 к контролируемому объекту 3. Погрешность срабатывания контактных преобразователей находится в пределах 1...2 мкм. Попытки еще уменьшить погрешность успеха не имели.
Во избежание образования дуги или искры, разрушающих контакты, мощность тока в цепи не должна превышать 100 мВт. Это значит, что если звено цепи — приемник сигнала от датчика — потребляет мощность 50... 100 мВт, то можно снимать сигнал непосредственно с датчика. В противном случае следует использовать усилитель на реле, транзисторах или тиристорах. Датчики этого типа широко применяются как конечные выключатели, датчики контроля попадания размера в поле допуска и т.д.
3.2. Реостатные и потенциометрические преобразователи
Реостатным преобразователем называют реостат, движок которого перемещается щупом вслед за перемещением контролируемой точки объекта, т. е. преобразователи этого типа являются регулируемыми омическими сопротивлениями. Естественной входной величиной датчиков этого типа является перемещение движка.
При последовательной схеме включения датчик называется реостатным, перемещение движка реостата преобразуется в изменение активного выходного сопротивления реостата или тока, являющихся естественными выходными величинами. При схеме делителя напряжения (схеме потенциометра) датчик называется потенциометрическим первичным преобразователем, его естественной выходной величиной является выходное напряжение.
Так как выходной величиной реостата служит сопротивление, датчик является параметрическим; сопротивление меняется плавно при изменении входной величины (положения движка), датчик является аналоговым. Сопротивление реостата может зависеть от перемещения движка как линейно (чаще всего), так и по более сложному закону.
Основным требованием, предъявляемым к этим датчикам, является обеспечение определенной однозначной зависимости между величиной сопротивления и перемещением движка.
Основными элементами реостатного датчика (рис. 3.2, 6) являются: каркас 3 из диэлектрика (дерево, текстолит, пластмасса)нанесенным на него сопротивлением в виде обмотки 2 из проволоки, слоя полупроводника или пленки металла; подвижная токосъемная щетка 1, скользящая непосредственно по поверхности сопротивления или по ряду соединенных с ним контактов.
Рис. 3.2. Контактный (а) и реостатный (6) датчики
На рис. 3.3 приведена конструкция потенциометрического датчика для измерения угловых перемещений, состоящего из каркаса 3 с обмоткой /, по которой ходит движок 2 с подвижным контактом 4.
Рис. 3.3. Потенциометрический датчик угловых перемещений:
1 — обмотка; 2 — движок; 3 — каркас; 4 — подвижный контакт
Материалы проволоки, используемые для намотки реостатных датчиков, указаны в табл. 3.1.
На практике чаще других используются константан, нихром и манганин, обладающие низкой стоимостью, высоким удельным сопротивлением, обеспечивающим высокую точность измерения, и широким температурным диапазоном. Кроме того, эти материалы стойки к износу и коррозии, что обеспечивает хороший контакт с движком.
Таблица 3.1
Материал |
Удельное сопротивление, |
Максимальная рабочая |
|
Ом . ммг/м |
температура, °С |
Константан |
0,48 |
500 |
Нихром |
1,1...1,2 |
1050 |
Манганин |
0,42 |
300 |
Платина |
0,09...0,105 |
500 |
Золото |
0,022 |
500 |
|
|
|
Щетки выполняют в виде проволок, лент или роликов из бронзы, серебра, платиноиридиевого сплава и других упругих материалов. Провод реостата должен быть покрыт эмалью или слоем окислов, изолирующих витки друг от друга. Вдоль траектории движка изоляция счищается, а сам провод полируется. Активное сопротивление реостата составляет десятки и сотни Ом при погрешности порядка 1 %. Индуктивное и емкостное сопротивления реостата малы, и ими можно пренебречь при частотах до 10 кГц. Сопротивление реостата меняется скачкообразно при переходе движка с одного витка на другой, соседний. чтобы уменьшить погрешность квантования, увеличить разрешающую способность и сделать датчик практически аналоговым, число витков выбирают обычно не меньше 100. Для реостатных первичных преобразователей пригодны все виды измерительных цепей, из которых типичной является цепь потенциометрического включения , когда UH = Ех/1.
Достоинствами реостатных датчиков являются:
- простота конструкции;
- высокий уровень выходного сигнала (напряжение — до нескольких десятков вольт, ток — до нескольких десятков миллиампер);
- возможность работы как на постоянном, так и на переменном токе.
Недостатками этих преобразователей являются:
- невысокая надежность и ограниченная долговечность вследствие износа скользящего контакта и истирания обмотки;
- сравнительно большое усилие, необходимое для перемещения ползунка;
- опасность искрообразования на контакте обмотки с ползунком;
- относительно большие габаритные размеры.
Реостатные датчики применяются для измерения больших перемещений (десятки миллиметров) с точностью до 0,1 мм. В автоматических системах движок реостата может быть механически связан с суппортом, клапаном или другим подвижным элементом, положение которого требуется измерять и передавать в виде электрического сигнала. При перемещении элемента перемещается и движок, вызывая изменение тока и напряжения в цепи. Чем сильнее движок прижимается к обмотке, тем надежнее контакт, но больше усилие, требуемое для перемещения движка. Это вызывает определенные трудности при конструировании измерительного прибора, так как усилие, развиваемое чувствительными элементами (мембранами, поплавками и т.п.} часто невелико.