
Типы геометрических моделей
Подсистемы графического и геометрического моделирования (ГГМ) занимают центральное место в САПП. Конструирование изделий в них, как правило, проводится в интерактивном режиме при оперировании геометрическими моделями, т.е. математическими объектами, отображающими форму изделия, состав сборочных узлов и возможно некоторые дополнительные параметры (масса, цвета поверхности и т.п.).
В подсистемах ГГМ типичный маршрут обработки данных включает в себя получение проектного решения в прикладной программе, его представление в виде геометрической модели (геометрическое моделирование), подготовку проектного решения к визуализации, собственно визуализацию при помощи ПК при необходимости корректировку решения в интерактивном режиме.
Две последние операции реализуются на базе вычислительных средств ГГМ. Когда говорят о математическом обеспечении ГГМ, имеют в виду, прежде всего модели, методы и алгоритмы для геометрического моделирования и подготовки к визуализации.
Различают математическое обеспечение двумерного (2D) и трехмерного (3D) ГГМ.
Основные применения 2D ГГМ подготовка чертежной документации в САПП, топологическое проектирование печатных плат и кристаллов БИС в САПП электронной промышленности.
В процессе 3D моделирования создаются геометрические модели, т.е. модели, отражающие геометрические свойства изделий. Различают геометрические модели каркасные (проволочные), поверхностные, объемные (твердотельные).
Каркасная модель представляет форму изделия в виде конечного множества линий, лежащих на поверхностях изделия. Для каждой линии известны координаты концевых точек и указана их инцидентность ребрам или поверхностям. Оперировать каркасной моделью на дальнейших операциях САПП неудобно, и поэтому каркасные модели в настоящее время используют редко.
Поверхностная модель отображает форму изделия с помощью задания ограничивающих ее поверхностей, например, в виде совокупности данных о гранях, ребрах и вершинах.
Особое место занимают модели изделий с поверхностями сложной формы, так называемыми скульптурными поверхностями. К таким изделиям относятся, например, корпуса микросхем, компьютеров, рабочих станций ) и др.
Объемные модели отличаются тем, что в них в явной форме содержатся сведения о принадлежности элементов внутреннему или внешнему по отношению к изделию пространству.
Рассмотренные модели отображают тела с замкнутыми объемами, являющиеся так называемыми многообразиями (manifold). Некоторые системы геометрического моделирования допускают оперирование немногообразными моделями (nonmanifold), примерами которых могут быть модели тел, касающихся друг друга в одной точке или вдоль прямой. Немногообразные модели удобны в процессе конструирования, когда на промежуточных этапах полезно работать одновременно с трехмерными и двумерными моделями, не задавая толщины стенок конструкции, и т.п.
Систематизация геометрических моделей
С геометрическими моделями приходится иметь дело математику и физику, инженеру и конструктору, ученому и рабочему, врачу и художнику, космонавту и фотографу. Однако до сих пор не существует какого-либо систематического руководства по геометрические моделям и их применению. Объясняется это прежде всего тем, что слишком широк и разнообразен круг геометрических моделей.
Геометрические модели могут являться воплощением замысла проектировщика и служат для создания нового объекта. Имеет место и обратная схема, когда по объекту делается модель, например, при реставрации или ремонте.
Геометрические модели классифицируют на предметные (чертежи, карты, фотографии, макеты, телевизионные изображения и т.п.), расчетные и познавательные. Предметные модели тесно связаны с визуальным наблюдением. Информация, получаемая с предметных моделей, включает в себя сведения о форме и размерах объекта, о его расположении относительно других.
Чертежи машин, сооружений, технических приспособлений и их деталей выполняют с соблюдением ряда условных обозначений, особых правил и определенного масштаба. Различают чертежи деталей, монтажные, общего вида, сборочные, табличные, габаритные, наружных видов, пооперационные и т.д. В зависимости от стадии проектирования чертежи различают на чертежи технического предложения, эскизного и технического проектов, рабочие чертежи. Чертежи также различают по отраслям производства: машиностроительные, приборостроительные, строительные, горно-геологические, топографические и т.п. Чертежи земной поверхности называются картами. Чертежи различают по методу изображений: ортогональный чертеж, аксонометрия, перспектива, числовые отметки, аффинные проекции, стереографические проекции, киноперспектива и т.д.
Геометрические модели существенно различаются по способу исполнения: чертежи подлинники, оригиналы, копии, рисунки, картины, фотографии, киноленты, рентгенограммы, кардиограммы, макеты, модели, скульптуры и т.д. Среди геометрических моделей можно выделить плоские и объемные.
Графические построения могут служить для получения численных решений различных задач. При вычислении алгебраических выражений числа изображаются направленными отрезками. Для нахождения разности или суммы чисел соответствующие им отрезка откладываются на прямой. Умножение и деление осуществляется построением пропорциональных отрезков, которые отсекаются на сторонах угла параллельными прямыми. Комбинация действий умножения и сложения позволяет вычислять суммы произведений и взвешенное среднее. Графическое возведение в целую степень заключается в последовательном повторении умножения. Графическим решением уравнений является значение абсциссы точки пересечения кривых. Графически можно вычислять определенный интеграл, строить график производной, т.е. дифференцировать, и интегрировать дифференциальные уравнения. Геометрические модели для графических вычислений необходимо отличать от номограмм и расчетных геометрических моделей (РГМ). Графические вычисления требуют каждый раз последовательности построений. Номограммы и РГМ представляют собой геометрические изображения функциональных зависимостей и не требуют для нахождения численных значений новых построений. Номограммы и РГМ используются для вычислений и исследований функциональных зависимостей. Вычисления на РГМ и номограммах заменяется считыванием ответов с помощью элементарных операций, указанных в ключе номограммы. Основными элементами номограмм являются шкалы и бинарные поля. Номограммы подразделяют на элементарные и составные. Номограммы также различают по операции в ключе. Принципиальное различие РГМ и номограммы состоит в том, что для построения РГМ используются геометрические методы, а для построения номограмм – аналитические методы.
Геометрические модели, изображающие отношения между элементами множества называются графами. Графы – модели порядка и образа действия. На этих моделях нет расстояний, углов, безразлично соединение точек прямой или кривой линией. В графах различаются только вершины, ребра и дуги. Впервые графы использовались в ходе решения головоломок. В настоящее время графы эффективно используются в теории планирования и управления, теории расписаний, социологии, биологии, электронике, в решений вероятностных и комбинаторных задач и т.п.
Графическая модель функциональной зависимости называется графиком. Графики функций можно строить по заданной его части или по графику другой функции, используя геометрические преобразования.
Графическое изображение, наглядно показывающее соотношение каких-либо величин, является диаграммой. Например, диаграмма состояния (фазовая диаграмма), графически изображает соотношение между параметрами состояния термодинамической равновесной системы. Столбчатая диаграмма, представляющая собой совокупность смежных прямоугольников, построенных на одной прямой и представляющих распределение каких-либо величин по количественному признаку, называется гистограммой.
Особо важное значение имеют теоретические геометрические модели. В аналитической геометрии геометрические образы исследуются средствами алгебры на основе метода координат. В проективной геометрии изучаются проективные преобразования и неизменные свойства фигур, независящие от них. В начертательной геометрии изучаются пространственные фигуры и методы решения пространственных задач при помощи построения их изображений на плоскости. Свойства плоских фигур рассматриваются в планиметрии, свойства пространственных фигур – в стереометрии. В сферической тригонометрии изучаются зависимости между углами и сторонами сферических треугольников. Теория фотограмметрии и стереофотограмметрии позволяет определять формы, размеры и положения объектов по их фотографическим изобра