
- •Contents
- •Send Us Your Comments
- •Preface
- •Audience
- •Organization
- •Related Documentation
- •Conventions
- •Documentation Accessibility
- •1 Introduction to the Oracle Server
- •Database Structure and Space Management Overview
- •Logical Database Structures
- •Physical Database Structures
- •Data Dictionary Overview
- •Data Access Overview
- •SQL Overview
- •Objects Overview
- •PL/SQL Overview
- •Java Overview
- •XML Overview
- •Transactions Overview
- •Data Integrity Overview
- •SQL*Plus Overview
- •Memory Structure and Processes Overview
- •An Oracle Instance
- •Memory Structures
- •Process Architecture
- •The Program Interface Mechanism
- •An Example of How Oracle Works
- •Application Architecture Overview
- •Client/Server Architecture
- •Multitier Architecture: Application Servers
- •Distributed Databases Overview
- •Replication Overview
- •Streams Overview
- •Advanced Queuing Overview
- •Heterogeneous Services Overview
- •Data Concurrency and Consistency Overview
- •Concurrency
- •Read Consistency
- •Locking Mechanisms
- •Quiesce Database
- •Database Security Overview
- •Security Mechanisms
- •Database Administration Overview
- •Enterprise Manager Overview
- •Database Backup and Recovery Overview
- •Data Warehousing Overview
- •Differences Between Data Warehouse and OLTP Systems
- •Data Warehouse Architecture
- •Materialized Views
- •OLAP Overview
- •Change Data Capture Overview
- •High Availability Overview
- •Transparent Application Failover
- •Online Reorganization Architecture
- •Data Guard Overview
- •LogMiner Overview
- •Real Application Clusters
- •Real Application Clusters Guard
- •Content Management Overview
- •Oracle Internet File System Overview
- •2 Data Blocks, Extents, and Segments
- •Introduction to Data Blocks, Extents, and Segments
- •Data Blocks Overview
- •Data Block Format
- •Free Space Management
- •Extents Overview
- •When Extents Are Allocated
- •Determine the Number and Size of Extents
- •How Extents Are Allocated
- •When Extents Are Deallocated
- •Segments Overview
- •Introduction to Data Segments
- •Introduction to Index Segments
- •Introduction to Temporary Segments
- •Automatic Undo Management
- •3 Tablespaces, Datafiles, and Control Files
- •Introduction to Tablespaces, Datafiles, and Control Files
- •Oracle-Managed Files
- •Allocate More Space for a Database
- •Tablespaces Overview
- •The SYSTEM Tablespace
- •Undo Tablespaces
- •Default Temporary Tablespace
- •Using Multiple Tablespaces
- •Managing Space in Tablespaces
- •Multiple Block Sizes
- •Online and Offline Tablespaces
- •Read-Only Tablespaces
- •Temporary Tablespaces for Sort Operations
- •Transport of Tablespaces Between Databases
- •Datafiles Overview
- •Datafile Contents
- •Size of Datafiles
- •Offline Datafiles
- •Temporary Datafiles
- •Control Files Overview
- •Control File Contents
- •Multiplexed Control Files
- •4 The Data Dictionary
- •Introduction to the Data Dictionary
- •Structure of the Data Dictionary
- •SYS, Owner of the Data Dictionary
- •How the Data Dictionary Is Used
- •How Oracle Uses the Data Dictionary
- •How to Use the Data Dictionary
- •Dynamic Performance Tables
- •Database Object Metadata
- •Introduction to an Oracle Instance
- •The Instance and the Database
- •Connection with Administrator Privileges
- •Initialization Parameter Files
- •Instance and Database Startup
- •How an Instance Is Started
- •How a Database Is Mounted
- •What Happens When You Open a Database
- •Database and Instance Shutdown
- •Close a Database
- •Unmount a Database
- •Shut Down an Instance
- •6 Application Architecture
- •Client/Server Architecture
- •Multitier Architecture
- •Clients
- •Application Servers
- •Database Servers
- •Oracle Net Services
- •How Oracle Net Services Works
- •The Listener
- •7 Memory Architecture
- •Introduction to Oracle Memory Structures
- •System Global Area (SGA) Overview
- •Dynamic SGA
- •Database Buffer Cache
- •Redo Log Buffer
- •Shared Pool
- •Large Pool
- •Control of the SGA’s Use of Memory
- •Other SGA Initialization Parameters
- •Program Global Areas (PGA) Overview
- •Content of the PGA
- •SQL Work Areas
- •PGA Memory Management for Dedicated Mode
- •Dedicated and Shared Servers
- •Software Code Areas
- •8 Process Architecture
- •Introduction to Processes
- •Multiple-Process Oracle Systems
- •Types of Processes
- •User Processes Overview
- •Connections and Sessions
- •Oracle Processes Overview
- •Server Processes
- •Background Processes
- •Trace Files and the Alert Log
- •Shared Server Architecture
- •Scalability
- •Dispatcher Request and Response Queues
- •Shared Server Processes (Snnn)
- •Restricted Operations of the Shared Server
- •Dedicated Server Configuration
- •The Program Interface
- •Program Interface Structure
- •Program Interface Drivers
- •Communications Software for the Operating System
- •9 Database Resource Management
- •Introduction to the Database Resource Manager
- •Database Resource Manager Overview
- •Example of a Simple Resource Plan
- •How the Database Resource Manager Works
- •Resource Control
- •Database Integration
- •Performance Overhead
- •Resource Plans and Resource Consumer Groups
- •Activation of a Resource Plan
- •Groups of Resource Plans
- •Resource Allocation Methods and Resource Plan Directives
- •Resource Plan Directives
- •CPU Resource Allocation
- •Interaction with Operating-System Resource Control
- •Dynamic Reconfiguration
- •10 Schema Objects
- •Introduction to Schema Objects
- •Tables
- •How Table Data Is Stored
- •Nulls Indicate Absence of Value
- •Default Values for Columns
- •Partitioned Tables
- •Nested Tables
- •Temporary Tables
- •External Tables
- •Views
- •How Views are Stored
- •How Views Are Used
- •Mechanics of Views
- •Dependencies and Views
- •Updatable Join Views
- •Object Views
- •Inline Views
- •Materialized Views
- •Define Constraints on Views
- •Refresh Materialized Views
- •Materialized View Logs
- •Dimensions
- •The Sequence Generator
- •Synonyms
- •Indexes
- •Unique and Nonunique Indexes
- •Composite Indexes
- •Indexes and Keys
- •Indexes and Nulls
- •Function-Based Indexes
- •How Indexes Are Stored
- •How Indexes Are Searched
- •Key Compression
- •Reverse Key Indexes
- •Bitmap Indexes
- •Bitmap Join Indexes
- •Index-Organized Tables
- •Benefits of Index-Organized Tables
- •Index-Organized Tables with Row Overflow Area
- •Secondary Indexes on Index-Organized Tables
- •Bitmap Indexes on Index-Organized Tables
- •Partitioned Index-Organized Tables
- •Index-Organized Table Applications
- •Application Domain Indexes
- •Clusters
- •Hash Clusters
- •Introduction to Partitioning
- •Partition Key
- •Partitioned Tables
- •Partitioned Index-Organized Tables
- •Partitioning Methods
- •Range Partitioning
- •List Partitioning
- •Hash Partitioning
- •Composite Partitioning
- •When to Partition a Table
- •Partitioned Indexes
- •Local Partitioned Indexes
- •Global Partitioned Indexes
- •Global Nonpartitioned Indexes
- •Partitioned Index Examples
- •Miscellaneous Information about Creating Indexes on Partitioned Tables
- •Using Partitioned Indexes in OLTP Applications
- •Using Partitioned Indexes in Data Warehousing and DSS Applications
- •Partitioned Indexes on Composite Partitions
- •Partitioning to Improve Performance
- •Partition Pruning
- •Partition-wise Joins
- •Parallel DML
- •Introduction to Oracle Datatypes
- •Character Datatypes
- •CHAR Datatype
- •VARCHAR2 and VARCHAR Datatypes
- •Length Semantics for Character Datatypes
- •NCHAR and NVARCHAR2 Datatypes
- •Use of Unicode Data in an Oracle Database
- •LOB Character Datatypes
- •LONG Datatype
- •NUMBER Datatype
- •Internal Numeric Format
- •DATE Datatype
- •Use of Julian Dates
- •Date Arithmetic
- •Centuries and the Year 2000
- •Daylight Savings Support
- •Time Zones
- •LOB Datatypes
- •BLOB Datatype
- •CLOB and NCLOB Datatypes
- •BFILE Datatype
- •RAW and LONG RAW Datatypes
- •ROWID and UROWID Datatypes
- •The ROWID Pseudocolumn
- •Physical Rowids
- •Logical Rowids
- •Rowids in Non-Oracle Databases
- •ANSI, DB2, and SQL/DS Datatypes
- •XML Datatypes
- •XMLType Datatype
- •URI Datatypes
- •Data Conversion
- •13 Object Datatypes and Object Views
- •Introduction to Object Datatypes
- •Complex Data Models
- •Multimedia Datatypes
- •Object Datatype Categories
- •Object Types
- •Collection Types
- •Type Inheritance
- •FINAL and NOT FINAL Types
- •NOT INSTANTIABLE Types and Methods
- •User-Defined Aggregate Functions
- •Why Have User-Defined Aggregate Functions?
- •Creation and Use of UDAGs
- •How Do Aggregate Functions Work?
- •Application Interfaces
- •JPublisher
- •JDBC
- •SQLJ
- •Datatype Evolution
- •Introduction to Object Views
- •Advantages of Object Views
- •How Object Views Are Defined
- •Use of Object Views
- •Updates of Object Views
- •Updates of Nested Table Columns in Views
- •View Hierarchies
- •14 SQL, PL/SQL, and Java
- •SQL Overview
- •SQL Statements
- •Identification of Nonstandard SQL
- •Recursive SQL
- •Cursors
- •Shared SQL
- •Parsing
- •SQL Processing
- •The Optimizer Overview
- •PL/SQL Overview
- •How PL/SQL Runs
- •Language Constructs for PL/SQL
- •PL/SQL Program Units
- •PL/SQL Collections and Records
- •PL/SQL Server Pages
- •Java Overview
- •Java and Object-Oriented Programming Terminology
- •Class Hierarchy
- •Interfaces
- •Polymorphism
- •The Java Virtual Machine (JVM)
- •Why Use Java in Oracle?
- •Oracle’s Java Application Strategy
- •15 Dependencies Among Schema Objects
- •Introduction to Dependency Issues
- •Resolution of Schema Object Dependencies
- •Compilation of Views and PL/SQL Program Units
- •Function-Based Index Dependencies
- •Object Name Resolution
- •Shared SQL Dependency Management
- •Local and Remote Dependency Management
- •Management of Local Dependencies
- •Management of Remote Dependencies
- •16 Transaction Management
- •Introduction to Transactions
- •Statement Execution and Transaction Control
- •Statement-Level Rollback
- •Resumable Space Allocation
- •Transaction Management Overview
- •Commit Transactions
- •Rollback of Transactions
- •Savepoints In Transactions
- •Transaction Naming
- •The Two-Phase Commit Mechanism
- •Discrete Transaction Management
- •Autonomous Transactions
- •Autonomous PL/SQL Blocks
- •Transaction Control Statements in Autonomous Blocks
- •17 Triggers
- •Introduction to Triggers
- •How Triggers Are Used
- •Parts of a Trigger
- •The Triggering Event or Statement
- •Trigger Restriction
- •Trigger Action
- •Types of Triggers
- •Row Triggers and Statement Triggers
- •BEFORE and AFTER Triggers
- •INSTEAD OF Triggers
- •Triggers on System Events and User Events
- •Trigger Execution
- •The Execution Model for Triggers and Integrity Constraint Checking
- •Data Access for Triggers
- •Storage of PL/SQL Triggers
- •Execution of Triggers
- •Dependency Maintenance for Triggers
- •18 Parallel Execution of SQL Statements
- •Introduction to Parallel Execution
- •When to Implement Parallel Execution
- •When Not to Implement Parallel Execution
- •How Parallel Execution Works
- •Parallelized SQL Statements
- •Degree of Parallelism
- •SQL Operations That Can Be Parallelized
- •Parallel Query
- •Parallel DDL
- •Parallel DML
- •SQL*Loader
- •How to Make a Statement Run in Parallel
- •19 Direct-Path INSERT
- •Introduction to Direct-Path INSERT
- •Advantages of Direct-Path INSERT
- •Serial and Parallel Direct-Path INSERT
- •Direct-Path INSERT Into Partitioned and Nonpartitioned Tables
- •Serial Direct-Path INSERT into Partitioned and Nonpartitioned Tables
- •Parallel Direct-Path INSERT into Partitioned Tables
- •Parallel Direct-Path INSERT into Nonpartitioned Tables
- •Direct-Path INSERT and Logging Mode
- •Direct-Path INSERT with Logging
- •Direct-Path INSERT without Logging
- •Additional Considerations for Direct-Path INSERT
- •Index Maintenance with Direct-Path INSERT
- •Space Considerations with Direct-Path INSERT
- •Locking Considerations with Direct-Path INSERT
- •20 Data Concurrency and Consistency
- •Introduction to Data Concurrency and Consistency in a Multiuser Environment
- •Preventable Phenomena and Transaction Isolation Levels
- •Overview of Locking Mechanisms
- •How Oracle Manages Data Concurrency and Consistency
- •Multiversion Concurrency Control
- •Statement-Level Read Consistency
- •Transaction-Level Read Consistency
- •Read Consistency with Real Application Clusters
- •Oracle Isolation Levels
- •Comparison of Read Committed and Serializable Isolation
- •Choice of Isolation Level
- •How Oracle Locks Data
- •Transactions and Data Concurrency
- •Deadlocks
- •Types of Locks
- •DML Locks
- •DDL Locks
- •Latches and Internal Locks
- •Explicit (Manual) Data Locking
- •Oracle Lock Management Services
- •Flashback Query
- •Flashback Query Benefits
- •Some Uses of Flashback Query
- •21 Data Integrity
- •Introduction to Data Integrity
- •Types of Data Integrity
- •How Oracle Enforces Data Integrity
- •Introduction to Integrity Constraints
- •Advantages of Integrity Constraints
- •The Performance Cost of Integrity Constraints
- •Types of Integrity Constraints
- •NOT NULL Integrity Constraints
- •UNIQUE Key Integrity Constraints
- •PRIMARY KEY Integrity Constraints
- •Referential Integrity Constraints
- •CHECK Integrity Constraints
- •The Mechanisms of Constraint Checking
- •Default Column Values and Integrity Constraint Checking
- •Deferred Constraint Checking
- •Constraint Attributes
- •SET CONSTRAINTS Mode
- •Unique Constraints and Indexes
- •Constraint States
- •Constraint State Modification
- •22 Controlling Database Access
- •Introduction to Database Security
- •Schemas, Database Users, and Security Domains
- •User Authentication
- •Authentication by the Operating System
- •Authentication by the Network
- •Authentication by the Oracle Database
- •Multitier Authentication and Authorization
- •Authentication by the Secure Socket Layer Protocol
- •Authentication of Database Administrators
- •Oracle Internet Directory
- •User Tablespace Settings and Quotas
- •Default Tablespace Option
- •Temporary Tablespace Option
- •Tablespace Access and Quotas
- •The User Group PUBLIC
- •User Resource Limits and Profiles
- •Types of System Resources and Limits
- •Profiles
- •23 Privileges, Roles, and Security Policies
- •Introduction to Privileges
- •System Privileges
- •Schema Object Privileges
- •Table Security
- •View Security
- •Procedure Security
- •Type Security
- •Introduction to Roles
- •Common Uses for Roles
- •The Mechanisms of Roles
- •Grant and Revoke Roles
- •Who Can Grant or Revoke Roles?
- •Role Names
- •Security Domains of Roles and Users
- •PL/SQL Blocks and Roles
- •Data Definition Language Statements and Roles
- •Predefined Roles
- •The Operating System and Roles
- •Roles in a Distributed Environment
- •Fine-Grained Access Control
- •Dynamic Predicates
- •Application Context
- •Secure Application Roles
- •Creation of Secure Application Roles
- •24 Auditing
- •Introduction to Auditing
- •Features of Auditing
- •Mechanisms for Auditing
- •Statement Auditing
- •Privilege Auditing
- •Schema Object Auditing
- •Schema Object Audit Options for Views and Procedures
- •Fine-Grained Auditing
- •Focus Statement, Privilege, and Schema Object Auditing
- •Successful and Unsuccessful Statement Executions Auditing
- •BY SESSION and BY ACCESS Clauses of Audit Statement
- •Audit By User
- •Audit in a Multitier Environment
- •Allocating Extents in Dictionary Managed Tablespaces
- •Introduction to Rollback Segments
- •PCTFREE, PCTUSED, and Row Chaining
- •Glossary
- •Index

Distributed Databases Overview
of the query processing, thus removing some of the load from the database server. It can serve as an interface between clients and multiple database servers, including providing an additional level of security.
An end or database server that stores most of the data used in the operation This architecture enables use of an application server to:
Validate the credentials of a client, such as a web browser
Connect to an Oracle database server
Perform the requested operation on behalf of the client
The identity of the client is maintained throughout all tiers of the connection.
Distributed Databases Overview
A distributed database is a network of databases managed by multiple database servers that are used together. They are not usually seen as a single logical database. The data of all databases in the distributed database can be simultaneously accessed and modified. The primary benefit of a distributed database is that the data of physically separate databases can be logically combined and potentially made accessible to all users on a network.
Each computer that manages a database in the distributed database is called a node. The database to which a user is directly connected is called the local database. Any additional databases accessed by this user are called remote databases. When a local database accesses a remote database for information, the local database is a client of the remote server. This is an example of client/server architecture.
A database link describes a path from one database to another. Database links are implicitly used when a reference is made to a global object name in a distributed database.
While a distributed database enables increased access to a large amount of data across a network, it must also hide the location of the data and the complexity of accessing it across the network. The distributed database management system must also preserve the advantages of administrating each local database as though it were not distributed.
See Also : Oracle9i Database Administrator’s Guide for more information about distributed databases
Introduction to the Oracle Server 1-33

Distributed Databases Overview
Location Transparency
Location transparency occurs when the physical location of data is transparent to the applications and users of a database system. Several Oracle features, such as views, procedures, and synonyms, can provide location transparency. For example, a view that joins table data from several databases provides location transparency because the user of the view does not need to know from where the data originates.
Site Autonomy
Site autonomy means that each database participating in a distributed database is administered separately and independently from the other databases, as though each database were a non-networked database. Although each database can work with others, they are distinct, separate systems that are cared for individually.
Distributed Data Manipulation
The Oracle distributed database architecture supports all DML operations, including queries, inserts, updates, and deletes of remote table data. To access remote data, you make reference to the remote object’s global object name. No coding or complex syntax is required to access remote data.
For example, to query a table named employees in the remote database named sales, reference the table’s global object name:
SELECT * FROM employees@sales;
Two-Phase Commit
Oracle provides the same assurance of data consistency in a distributed environment as in a nondistributed environment. Oracle provides this assurance using the transaction model and a two-phase commit mechanism.
As in nondistributed systems, transactions should be carefully planned to include a logical set of SQL statements that should all succeed or fail as a unit. Oracle’s two-phase commit mechanism guarantees that no matter what type of system or network failure occurs, a distributed transaction either commits on all involved nodes or rolls back on all involved nodes to maintain data consistency across the global distributed database.
See Also: "The Two-Phase Commit Mechanism" on page 16-10
1-34 Oracle9i Database Concepts

Distributed Databases Overview
Replication Overview
Replication is the process of copying and maintaining database objects, such as tables, in multiple databases that make up a distributed database system. Changes applied at one site are captured and stored locally before being forwarded and applied at each of the remote locations. Oracle replication is a fully integrated feature of the Oracle server. It is not a separate server.
Replication uses distributed database technology to share data between multiple sites, but a replicated database and a distributed database are not the same. In a distributed database, data is available at many locations, but a particular table resides at only one location. For example, the employees table can reside at only the db1 database in a distributed database system that also includes the db2 and db3 databases. Replication means that the same data is available at multiple locations. For example, the employees table can be available at db1, db2, and db3.
See Also: Oracle9i Replication
Table Replication
Distributed database systems often locally replicate remote tables that are frequently queried by local users. By having copies of heavily accessed data on several nodes, the distributed database does not need to send information across a network repeatedly, thus helping to maximize the performance of the database application.
Data can be replicated using materialized views.
Multitier Materialized Views
Oracle supports materialized views that are hierarchical and updatable. Multitier replication provides increased flexibility of design for a distributed application. Using multitier materialized views, applications can manage multilevel data subsets with no direct connection between levels.
An updatable materialized view lets you insert, update, and delete rows in the materialized view and propagate the changes to the target master table. Synchronous and asynchronous replication is supported.
Figure 1–4 shows an example of multitier architecture, diagrammed as an inverted tree structure. Changes are propagated up and down along the branches connecting the outermost materialized views with the master (the root).
Introduction to the Oracle Server 1-35

Distributed Databases Overview
Figure 1–4 Multitier Architecture
|
Master |
|
|
Master |
|
|
|
|
|
||
|
|
|
|
|
|
|
|
|
|
|
|
Level 1 updatable MV
Level 1 updatable MV
|
Level 2 |
|
|
Level 2 |
|
|
Level 2 |
|
|
|
|
|
|
|
|||
|
updatable MV |
|
|
updatable MV |
|
|
updatable MV |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Level n updatable MV
Level n updatable MV
Conflict Resolution In Oracle9i conflict resolution routines are defined at the top level, the master site, and are pulled into the updatable materialized view site when needed. This makes it possible to have multitier materialized views. Existing system-defined conflict resolution methods are supported.
In addition, users can write their own conflict resolution routines. A user-defined conflict resolution method is a PL/SQL function that returns either true or false. True indicates that the method was able to successfully resolve all conflicting modifications for a column group.
See Also: Oracle9i Replication and Oracle9i SQL Reference for more information about creating and managing multitier materialized views
Streams Overview
Oracle Streams enables the sharing of data and events in a data stream, either within a database or from one database to another. The stream routes specified information to specified destinations. Oracle Streams provides the capabilities needed to build and operate distributed enterprises and applications, data warehouses, and high availability solutions. You can use all the capabilities of Oracle Streams at the same time. If your needs change, you can implement a new capability of Streams without sacrificing existing capabilities.
1-36 Oracle9i Database Concepts

Distributed Databases Overview
Using Oracle Streams, you control what information is put into a stream, how the stream flows or is routed from database to database, what happens to events in the stream as they flow into each database, and how the stream terminates. By configuring specific capabilities of Streams, you can address specific requirements. Based on your specifications, Streams can capture and manage events in the database automatically, including, but not limited to, DML changes and DDL changes. You can also put user-defined events into a stream. Then, Streams can propagate the information to other databases or applications automatically. Again, based on your specifications, Streams can apply events at a destination database.
You can use Streams to:
Capture changes at a database.
You can configure a background capture process to capture changes made to tables, schemas, or the entire database. A capture process captures changes from the redo log and formats each captured change into a logical change record (LCR). The database where changes are generated in the redo log is called the source database.
Enqueue events into a queue. Two types of events may be staged in a Streams queue: LCRs and user messages.
A capture process enqueues LCR events into a queue that you specify. The queue can then share the LCR events within the same database or with other databases.
You can also enqueue user events into a queue explicitly with a user application. These explicitly enqueued events can be LCRs or user messages.
Propagate events from one queue to another. These queues may be in the same database or in different databases.
Dequeue events from a queue.
A background apply process can dequeue events from a queue. You can also dequeue events explicitly with a user application.
Apply events at a database.
You can configure an apply process to apply all of the events in a queue or only the events that you specify. You can also configure an apply process to call your own PL/SQL subprograms to process events.
The database where LCR events are applied and other types of events are processed is called the destination database. In some configurations, the source database and the destination database may be the same.
Introduction to the Oracle Server 1-37