Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Холмская экзамен / лекция~1.doc
Скачиваний:
32
Добавлен:
12.05.2015
Размер:
520.7 Кб
Скачать

Детерминированные и стохастические модели.

Любому реальному процессу свойственны случайные колебания, вызываемые физической изменчивостью каких- либо факторов во времени. Кроме того, могут существовать случайные внешние воздействия на систему. Поэтому при равном среднем значении входных в параметров в различные моменты времени выходные параметры будут неодинаковы. Следовательно, если случайные воздействия на исследуемую систему существенны, необходимо разрабатывать вероятностную (стохастическую) модель объекта, учитывая статистические законы распределения параметров системы и выбирая соответствующий математический аппарат.

При построении детерминированных моделей случайными факторами пренебрегают, учитывая лишь конкретные условия решаемой задачи, свойства и внутренние связи объекта (по этому принципу построены практически все разделы классической физики)

Идея детерминистических методов - в использовании собственной динамики модели при эволюции системы.

В нашем курсе эти методы представляют: метод молекулярной динамики, преимуществами которого являться: точность и определенность численного алгоритма; недостатком - трудоемкость из- за подсчета сил взаимодействия между частицами (для системы N частиц на каждом шаге нужно выполнить операций подсчета этих сил).

При детерминистическом подходе задаються, и интегрируются по времени уравнения движения. Мы будем рассматривать системы из многих частиц. Положение частиц дают вклад потенциальной энергии в полную энергию системы, а их скорости определяют вклад кинетической энергии. Система движется вдоль траектории с постоянной энергией в фазовом пространстве (далее будут пояснения). Для детерминированных методов естественным является микроканонический ансамбль, энергия которого - это интеграл движения. Кроме того, можно исследовать и системы, для которых интегралом движения являться температура и (или) давление. В этом случае система незамкнута, и ее можно представить в контакте с тепловым резервуаром (канонический ансамбль). Для ее моделирования можно использовать подход, при котором мы ограничиваем ряд степеней свободы системы (например, задаем условие ).

Как мы уже отмечали, в случае, когда процессы в системе происходят непредсказуемо, такие события и связанные с ними величины называют случайными, а алгоритмы моделирования процессов в системе - вероятностными (стохастическими). Греческое stoohastikos- означает буквально “тот, кто может угадать”.

Стохастические методы используют несколько иной подход, чем детерминистические: требуется насчитать лишь конфигурационную часть задачи. Уравнения для импульса системы всегда можно проинтегрировать. Проблема, которая затем встает - каким образом вести переходы от одной конфигурации к другой, которые в детерминистическом подходе определяться импульсом. Такие переходы в стохастических методах осуществляться при вероятностной эволюции в марковском процессе. Марковский процесс является вероятностным аналогом собственной динамики модели.

Этот подход имеет то преимущество, что позволяет моделировать системы, не имеющие какой - бы то ни было собственной динамики.

В отличие от детерминистических, стохастические методы на ПК реализуют проще, быстрее, однако для получения близких к истинным величин необходима хорошая статистика, что требует моделирования большого ансамбля частиц.

Примером полностью стохастического метода является метод Монте-Карло. Стохастические методы используют важную концепцию марковского процесса (марковской цепи). Марковский процесс является вероятностным аналогом процесса в классической механике. Марковская цепь характеризуется отсутствием памяти, т. е. статистические характеристики ближайшего будущего определяться только настоящим, без учета прошлого.

Практичне заняття 2.

Модель случайного блуждания

Пример (формальный)

Предположим, что в узлах двумерной решетки в произвольных позициях размещены частицы. На каждом временном шаге частица “прыгает” в одну из блажащих позиций. Значит, частица имеет возможность выбора направления прыжка в любое из четырех ближайших мест. После прыжка частица "не помнит", откуда она прыгнула. Этот случай соответствует случайному блужданию и является марковской цепью. Результатом на каждом шаге является новое состояние системы частиц. Переход из одного состояния в другое зависит только от предыдущего состояния, т. е. вероятность нахождения системы в состоянии i зависит только от состояния i-1.

Какие же физические процессы в твердом теле напоминают нам (подобие) описанной формальной модели случайного блуждания?

Конечно же, диффузионные, т. е. самые, процессы, механизмы которых мы рассматривали курсе тепло - массопереноса (3 курс). В качестве примера вспомним обычную классическую самодиффузию в кристалле, когда, не меняя своих видимых свойств атомы периодически меняют места временной оседлости и блуждают по решетке, с помощью так называемого “вакансионного” механизма. Он же - один из важнейших механизмов диффузии в сплавах. Явление миграции атомов в твердых телах играют решающую роль во многих традиционных и нетрадиционных технологиях - металлургии, металлообработке, создании полупроводников и сверхпроводников, защитных покрытий и тонких пленок.

Его открыл Роберт Аустен в 1896 году, наблюдая диффузию золота и свинца. Диффузия- процесс перераспределения концентраций атомов в пространстве путем хаотической (тепловой) миграции. Причины, с точки зрения термодинамики, могут быть две: энтропийная (всегда) и энергетическая (иногда). Энтропийная причина - это увеличение хаоса при перемешивании атомов резного сорта. Энергетическая - способствует образованию сплава, когда выгоднее быть рядом атомом разного сорта, и способствует диффузионному распаду, когда энергетический выиграш, обеспечивается размещением вместе атомов одного сорта.

Наиболее распространенными механизмами диффузии являются:

  • вакансионный

  • межузловой

  • механизм вытеснения

Для реализации вакансионного механизма необходима хотя бы одна вакансия. Миграция вакансий осуществляется путем перехода в незанятый узел одного из соседних атомов. Атом же может осуществить диффузионный скачок, если рядом с ним оказалась вакансия. Вакансия см, с периодом тепловых колебаний атома в узле решеткис, при температуре Т=1330 К (на 6 К < точки плавления), число скачков, которое совершает вакансия в 1с, путь за одну секунду-см=3 м (=10 км/ч). По прямой же путь, проходимый вакансиейсм, т. е. в 300 раз короче пути по ломаной.

Природе понадобилось. чтобы вакансия в течении 1с раз изменила место оседлости, прошла по ломаной 3м, а сместилась по прямой всего лишь на 10 мкм. Атомы ведут себя спокойнее вакансий. Но и они миллион раз в секунду меняют место оседлости и движутся со скоростью примерно 1м/час.

Так. что достаточно одной вакансии на несколько тысяч атомов, чтобы при температуре, близкой к плавлению, перемещать атомы на микро уровне.

Сформируем теперь модель случайного блуждания для явления диффузии в кристалле. Процесс блуждания атома - хаотический и непредсказуемый. Однако для ансамбля блуждающих атомов должны проявляться статистические закономерности. Мы рассмотрим некоррелированные скачки.

Это значит, что если и- перемещение атомов приi и j-м скачках, то после усреднения по ансамблю блуждающих атомов:

(среднее произведение= произведению средних. Если блуждания полностью случайны, все направления равноправны и =0.)

пусть каждая частица ансамбля совершает N элементарных скачков. Тогда ее полное перемещение равно:

;

а средний квадрат перемещения

Так как корреляции нет, то второе слагаемое =0.

Пусть каждый скачок имеет одинаковую длину h и случайное направление, а среднее число скачков в единицу времени- v. Тогда

Очевидно, что

Назовем величину - коэффициентом диффузии блуждающих атомов. Тогда ;

Для трехмерного случая - .

Мы получили параболический закон диффузии - средний квадрат смещения пропорционален времени блужданий.

Именно эту задачу нам предстоит решить на следующей лабораторной работе - моделирование случайных одномерных блужданий.

Численная модель.

Мы задаем ансамбль из М частиц, каждая из которых совершает N шагов, независимо друг от друга, вправо или влево с одинаковой вероятностью. Длина шага = h.

Для каждой частицы вычисляем квадрат смещения заN шагов. Затем проводим усреднение по ансамблю - . Величина, если, т. е. Средний квадрат смещения пропорционален времени случайных блужданий- среднее время одного шага) - параболический закон диффузии.

Соседние файлы в папке Холмская экзамен