Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Новая папка / Дополнение к лекции №3 (1)

.docx
Скачиваний:
3
Добавлен:
12.05.2015
Размер:
166.54 Кб
Скачать

3

Дополнение к лекции №3

Теория Аббе

Сказанное выше справедливо для случая некогерентных источников, т.е. для самосветящихся объектов наблюдения. Однако для практики гораздо важнее ситуация освещенных объектов. Это означает, что отдельные точки объекта рассеивают волны, падающие на них из одного источника, т.е. сами являются источниками когерентного излучения.

Аббе (1873) указал весьма интересный прием определения разрешающей силы микроскопа для такого случая.

Рассмотрим для простоты случай, когда освещение производится параллельным пучком, а объект имеет простую форму дифракционной решетки, период которой d имеет размер (и смысл) мельчайшей различимой детали.

Рис. 1 Изображение дифракционной решетки

Свет перед попаданием на линзу микроскопа претерпевает дифракцию (рис. 1), формируя в результате интерференции в фокальной плоскости FF ряд главных максимумов, угловые расстояния между которыми определяются периодом решетки -объекта наблюдения (по Аббе - первичное изображение или спектр). В описанной ситуации положение дифракционных максимумов Ат задается условием:

d sinm = m λ

где т - целое число.

Так как все дифракционные максимумы соответствуют когерентным лучам, то за фокальной плоскостью объектива эти лучи опять интерферируют между собой, давая в плоскости Р2Р2, сопряженной относительно объектива 00' с плоскостью Р1Р1, изображение самого объекта (т.н. вторичное изображение).

Только полная совокупность дифракционных максимумов определит вторичное изображение в полном соответствии с объектом.

Чем крупнее деталь изображения, тем меньший угол дифракции ей соответствует. Детали структуры меньше длины волны вообще не могут быть наблюдаемы, т.к. волны, дифрагировавшие на таких деталях, не доходят до экрана Р2Р2'

Если диафрагма, расположенная в фокальной плоскости обрезает дифрагировавшие пучки так, что в формировании изображения будет участвовать только центральный луч, то мы не увидим изображения объектов, дающих дифракцию от периодической структуры.

Правило Луммера гласит: если оптическая система формирует изображение без искажений и улавливает весь дифрагированный объектом свет, то изображение правильно передает распределение амплитуд и фаз излучения, рассеянного объектом.

При исследовании реальных объектов в ТЕМ следует иметь в виду, что дифракционная картина формируется не только атомами, но и зернами и дефектами решетки. Так как размер зерен гораздо больше межатомных расстояний, то углы дифракции на зернах гораздо меньше углов дифракции на атомной структуре. Поэтому при отсечении апертурной диафрагмой пучков, сформированных дифракцией на атомах, изображение в плоскости изображения микроскопа образуется лучами, дифрагировавшими на зернах. Поэтому на экране мы наблюдаем зерна, а не атомы. Для того, чтобы увидеть атомы, необходимо, чтобы лучи, дифрагировавшие на атомах, прошли через апертурную диафрагму и также принимали участие в формировании картины объекта в плоскости изображения. Для этого необходимо, чтобы углы дифракции на атомах, были весьма малыми. Этого можно достичь, уменьшив длину волны электронов, что аппаратно реализуется повышением ускоряющего напряжения в источнике электронов микросокпа до 200-400 кВ и выше. Так получают изображения дифрагирующих решеток в электронных микроскопах, работающих в режиме высокого разрешения (HR TEM – high resolution transmission electron microscopy).

/var/www/studfiles2/data/www/download/2706/299/jqawD2mSNY.Tjky