Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

PraktykumLA+AG

.pdf
Скачиваний:
27
Добавлен:
12.05.2015
Размер:
4.04 Mб
Скачать

Національний технічний університет України «Київський політехнічний інститут»

І. В. Алєксєєва, В. О. Гайдей, О. О. Диховичний, Л. Б. Федорова

ЛІНІЙНА АЛГЕБРА ТА АНАЛІТИЧНА ГЕОМЕТРІЯ

ПРАКТИКУМ

Київ — 2011

Лінійна алгебра та аналітична геометрія. Практикум. (І курс І семестр) / Уклад.: І. В. Алєксєєва, В. О. Гайдей, О. О. Диховичний, Л. Б. Федорова. — К: НТУУ «КПІ», 2011. — 184 с.

Гриф надано Методичною радою НТУУ «КПІ» (протокол № 5 від 22.01.2009)

Навчальне видання

Лінійна алгебра та аналітична геометрія. Практикум

для студентів І курсу технічних спеціальностей

Укладачі:

Алєксєєва Ірина Віталіївна, канд. фіз-мат. наук, доц.

 

Гайдей Віктор Олександрович, канд. фіз-мат. наук, доц.

 

Диховичний Олександр Олександрович, канд. фіз-мат. наук, доц.

 

Федорова Лідія Борисівна, канд. фіз-мат. наук, доц.

Відповідальний

В. В. Булдигін, д-р фіз.-мат. наук, професор

редактор

 

Рецензенти:

С. В. Єфіменко, канд. фіз.-мат. наук, доц.

 

В. Г. Шпортюк, канд. фіз.-мат. наук, доц.

 

Зміст

 

Теоретична частина

 

Вступ ........................................................................................................................

4

Розділ 1. ЛІНІЙНА АЛГЕБРА..............................................................................

5

Розділ 2. ВЕКТОРНА АЛГЕБРА .......................................................................

24

Розділ 3. АНАЛІТИЧНА ГЕОМЕТРІЯ.............................................................

42

Практична частина

 

Розділ 1. ЛІНІЙНА АЛГЕБРА

 

1.

Матриці...........................................................................................................

63

2.

Визначники .....................................................................................................

76

3.

Ранг матриці ...................................................................................................

87

4.

Системи лінійних алгебричних рівнянь........................................................

92

Розділ 2. ВЕКТОРНА АЛГЕБРА

 

5.

Вектори .........................................................................................................

105

6.

Скалярне множення векторів.......................................................................

115

7.

Векторне множення векторів.......................................................................

123

8.

Комплексні числа .........................................................................................

130

Розділ 3. АНАЛІТИЧНА ГЕОМЕТРІЯ

 

9.

Геометрія прямої і площини ........................................................................

141

10. Задачі на прямі й площини ........................................................................

150

11. Пряма на площині ......................................................................................

169

12. Криві 2-го порядку .....................................................................................

174

13. Поверхні 2-го порядку ...............................................................................

179

Список використаної і рекомендованої літератури......................................

183

Вступ

Практикум з вищої математики «Лінійна алгебра та аналітична геометрія» є складовою навчального комплекту з вищої математики, який містить: конспект лекцій, практикум, збірник індивідуальних домашніх завдань, збірник контрольних та тестових завдань.

Практикум складено на основі багаторічного досвіду викладання математики в НТУУ «КПІ», його зміст відповідає навчальним програмам з вищої математики всіх технічних спеціальностей НТУУ «КПІ» денної та заочної форм навчання і містить такі розділи дисципліни «Вища математика»:

матриці та визначники;

системи лінійних алгебричних рівнянь;

векторна алгебра;

комплексні числа;

геометрія прямої і площини;

криві 2-го порядку;

поверхні 2-го порядку.

Практикум містить розгорнутий довідковий матеріал, якого потребує свідоме розв’язування задач, широкий спектр розв’язаних навчальних задач, які достатньо розкривають відповідні теоретичні питання, сприяють розвиткові практичних навичок і є зразком належного оформлення розв’язань задач для самостійної роботи, задачі для самостійної роботи в аудиторії та домашнього завдання з відповідями.

Метою практикуму є:

допомогти в опануванні студентами основ математичного апарату лінійної алгебри та аналітичної геометрії;

розвинути логічне та аналітичне мислення;

виробити навички вибору ефективного методу розв’язання задач. Самостійне розв’язання задач, яке формує основу математичного мислення,

передбачає активну роботу з теоретичним матеріалом, використанням конспекту лекцій, посібників та підручників. Деякі з них подано у списку рекомендованої літератури.

У практичній частині використано такі позначення:

[A.B.C] — посилання на клітинку С, у якій вміщено теоретичний факт або формулу, таблиці A.B. з теми А;

,,,... — посилання у навчальній задачі на коментар, який вміщено після її розв’язання.

Розділ 1. ЛІНІЙНА АЛГЕБРА

1.1. Матриці

 

Матриця. Матрицею A розміром

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

i-й рядок : ai

 

 

m n називають прямокутну таблицю

a

 

 

 

 

 

 

 

a

 

 

 

 

 

a

 

 

 

 

дійсних чисел (елементів матриці)

 

 

11

 

 

 

 

 

1j

 

 

 

1n

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a

ij

,i 1,m, j 1,n,

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A ai1

 

 

 

aij

 

ain

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

розташованих у m рядках та n

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

стовпцях і позначають

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a

 

 

 

 

a

 

 

a

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

m1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

mj

 

 

 

mn

 

 

 

 

Am n (aij )m n.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

j-й стовпець : aj

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Матриця-рядок

 

 

 

 

 

 

Матриця-стовпець

 

 

 

 

 

 

 

 

a1 a2

an

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a

 

 

 

 

 

 

 

 

a1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a

m

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Нульова матриця

 

 

 

 

 

 

Квадратна матриця n -го порядку

 

 

 

0

0

0

 

 

 

 

 

 

 

 

 

 

a

 

 

 

 

 

 

1n

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

0 0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2n

 

 

 

 

 

m рядків

 

 

 

 

 

 

a

 

 

 

 

 

 

 

 

Om n

 

 

 

 

 

 

 

 

 

An An n

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

0

 

 

 

 

 

 

 

 

a

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

nn

 

 

 

 

n стовпців

 

 

 

 

побічна діагональ

головна діагональ

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Нижня трикутна матриця

Верхня трикутна матриця

 

 

 

 

a

 

0 0

 

 

 

a

 

a

 

 

 

a

 

 

 

 

 

 

 

11

 

 

 

 

 

 

 

 

 

 

 

 

 

11

 

12

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1n

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a22

 

0

 

 

 

 

0

a22

 

 

 

 

 

 

 

 

 

a12

 

 

 

 

 

 

a2n

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a

 

a

 

 

 

 

0

0

a

 

 

 

 

 

 

a

 

 

 

 

 

 

 

 

 

 

 

 

 

n1

 

n2

 

 

 

 

nn

 

 

 

 

 

 

 

 

 

 

 

 

nn

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Елемент aij матриці A розташований в i -му рядку і j -му стовпці.

 

6

 

 

 

 

Розділ 1. ЛІНІЙНА АЛГЕБРА

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Діагональна матриця

 

 

Одинична

 

 

 

 

 

 

 

 

1

0

 

 

 

 

 

 

 

 

 

E

 

 

 

 

 

 

 

 

 

 

 

 

 

матриця

 

 

 

 

 

2

 

 

 

,

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

0

 

 

 

 

 

 

 

 

 

 

 

 

 

0

1

 

 

 

a11

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

a

0

 

 

 

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

0

0

 

 

 

 

 

22

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

En

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

E

 

 

 

 

 

1 0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

0

a

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

nn

 

 

 

 

 

 

 

 

 

 

 

0

 

0 1

 

 

 

 

 

 

 

 

 

 

0 0 1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Матриця є стовпцем своїх рядків і

 

 

 

 

a

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

рядком своїх стовпців.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Am n

 

 

 

 

 

(a1 a2 ...

an )

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

m

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1.2. Лінійні дії над стовпцями (рядками)

Рівність стовпців. Два стовпці x та

 

x1

 

 

 

 

 

y1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

y називають рівними, якщо вони мають:

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

k,

 

 

 

 

x2

 

 

 

 

y2

 

 

 

 

m

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1) однакову висоту;

 

 

 

 

 

 

 

 

 

 

 

 

x

 

 

y

,i 1,m

 

 

 

 

 

 

 

 

 

 

 

i

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

i

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2) рівні відповідні елементи.

x

 

 

 

 

 

y

k

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

m

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Додавання (віднімання) стовпців.

 

 

 

x

1

 

 

 

y

 

 

 

 

x

1

y

1

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

Сумою (різницею) двох стовпців x та y

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

y2

 

 

 

 

 

x2

 

 

 

y2

 

 

x2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

заввишки m називають стовпець x y

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

заввишки m, кожен елемент якого

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

y

 

 

 

 

 

 

x

 

 

 

 

 

y

 

 

 

x

m

 

 

 

дорівнює сумі (різниці) відповідних

 

 

 

 

 

m

 

 

 

m

 

 

 

 

 

m

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

елементів стовпців x та y.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(xi )m (yi )m (xi yi )m

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Множення стовпця на число.

 

 

 

 

 

 

 

 

 

 

 

 

 

x1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

x1

 

 

 

 

 

 

 

Добутком стовпця x заввишки m на

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

x2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

x2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

дійсне число називають стовпець

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

x заввишки m, кожен елемент якого

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

x

 

 

x

 

 

 

 

 

 

дорівнює відповідному елементу

 

 

 

 

 

 

 

 

 

 

m

 

 

 

 

 

m

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

стовпця x, помноженому на це число.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(xi )m ( xi )m

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Розділ 1. ЛІНІЙНА АЛГЕБРА

7

1.3. Лінійні дії над матрицями

Рівність матриць. Дві матриці A

 

 

 

 

Am n

Bk l

 

 

 

 

 

 

 

 

 

 

та B називають рівними, якщо вони:

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

m k,n l;

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1) однакового розміру;

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

b ,i 1,m, j 1,n

 

 

 

 

 

 

a

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ij

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2) мають рівні відповідні елементи.

 

ij

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Додавання (віднімання) матриць.

 

a

 

 

a

 

 

 

a

1n

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

11

 

 

12

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Сумою матриць A та B однакового

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a22

 

 

a2n

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a21

 

 

 

 

 

 

 

 

 

 

 

розміру називають матрицю A B

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

того самого розміру, елементи якої

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a

 

 

 

a

 

 

 

 

 

 

 

 

 

 

 

 

дорівнюють сумі відповідних

 

 

a

m1

 

 

 

 

mn

 

 

 

 

 

 

 

 

 

 

 

 

 

 

m2

 

 

 

 

 

 

 

 

 

 

 

 

елементів матриць A та B.

 

 

 

 

 

b

 

 

b

 

 

b

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

11

 

 

12

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1n

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

b22

 

b2n

 

 

 

 

 

 

 

 

Різницею матриць A та B однакового

 

 

 

b21

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

розміру називають матрицю A B

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

того самого розміру, елементи якої

 

 

 

 

 

 

 

b

 

 

b

 

 

 

 

 

 

 

 

 

 

 

 

b

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

m1

 

 

m2

 

 

 

 

 

mn

 

 

 

 

 

 

 

 

дорівнюють різниці відповідних

 

a

b

 

 

 

a

 

b

 

 

 

a

b

 

 

 

 

 

 

 

 

 

 

 

 

 

 

11

 

 

11

 

 

 

12

 

 

12

 

 

 

 

 

 

 

 

1n

 

1n

 

елементів матриць A та B.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

b21

 

 

a22 b22

 

a2n

b2n

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a21

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

aij

 

bij

 

 

aij

bij

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

m n

m n

m n

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

b

 

 

 

a

 

 

b

 

a

 

 

 

b

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a

 

 

 

m2

 

mn

 

 

 

 

 

 

 

 

 

 

 

 

 

 

m1

 

 

m1

 

 

 

 

m2

 

 

 

 

 

 

 

 

mn

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Множення матриці на число.

 

 

a11

 

 

a12

 

a1n

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Добутком матриці A на число

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a22

 

a2n

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a21

 

 

 

 

 

 

 

 

 

називають матрицю A,

елементи якої

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

дорівнюють добутку елементів

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a

 

 

 

a

 

 

 

 

 

 

 

 

матриці A на число .

 

 

 

 

 

a

m1

 

m2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

mn

 

 

 

 

 

 

a

 

 

 

 

a

 

 

 

 

 

 

a11

 

 

a12

a1n

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ij

m n

ij

m n

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a21

 

 

a22

a2n

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a

 

 

 

a

 

 

 

a

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

m1

 

m2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

mn

 

 

 

 

Властивості додавання матриць.

Властивості множення матриці

 

A B B A;

 

 

 

 

 

на число.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1 A A;

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A (B C ) (A B) C;

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

( ) A A A;

 

 

 

 

 

 

A Om n

A;

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A ( A) Om n

 

 

 

 

 

(A B) A B;

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

( A) ( ) A

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

8 Розділ 1. ЛІНІЙНА АЛГЕБРА

1.4. Множення матриць

Узгоджені матриці. Матрицю A називають узгодженою з матрицею B, якщо кількість стовпців матриці A дорівнює кількості рядків матриці B («довжина» матриці A дорівнює «висоті» матриці B).

Добуток рядка на стовпець.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

y

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Добутком рядка x (x

) завдовжки

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

j

n

 

 

 

 

 

x1

 

 

 

 

 

 

 

 

 

 

y2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

x2 xn

 

 

 

 

 

 

 

 

n на стовпець y (yi )n

 

 

 

 

 

 

 

 

 

 

 

 

 

заввишки n

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

називають число x y, яке дорівнює

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

y

n

 

 

 

 

 

 

 

сумі добутків елементів рядка на

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

x1y1 x2y2

... xnyn

 

 

 

 

відповідні елементи стовпця.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Множення матриць. Добутком

 

 

 

a1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

матриці A

на матрицю B

 

 

 

 

 

 

 

 

 

|

 

 

 

 

 

 

|

 

 

 

 

 

|

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

m l

 

 

l n

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

називають матрицю C AB

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

bj

 

bn

 

 

 

 

 

 

 

 

 

 

ai

 

 

 

 

b1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

розміром m n, кожний елемент c

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

|

 

 

 

 

 

|

 

 

 

 

 

ij

 

 

 

 

 

 

 

 

|

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

якої дорівнює добуткові i -го рядка

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

матриці A на j -й стовпець матриці B.

 

 

 

m

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a

b

 

a

 

b

 

 

 

a

 

b

 

 

 

 

 

 

 

 

1

 

1

 

 

 

 

 

1

 

 

j

 

 

 

 

 

1

 

n

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(ai )m (bj )n (cij )m n (ai bj )m n

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Матриці множать за правилом «рядок

 

 

 

b

 

 

 

b

 

 

 

 

b

 

 

a

 

 

a

 

 

 

 

a

 

 

 

 

 

 

 

 

 

 

 

 

i

 

1

 

 

 

 

 

 

i

 

 

j

 

 

 

 

 

i

 

n

 

на стовпець».

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

b

 

 

 

 

b

 

 

 

 

b

 

 

 

 

 

 

 

a

m

 

a

m

j

 

a

m

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

n

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Схема Фалька множення матриць

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

n

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

l

 

 

 

 

B

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

l

m

A

AB

Особливості множення матриць.

Властивості множення матриць.

множення матриць не комутативне;

A (B C ) (A B) C;

 

добуток ненульових матриць може

C (A B) C A C B,

бути нульовою матрицею.

 

 

(A B) C A C B C;

 

1

0

 

 

0

0

 

 

0

0

 

(A B) ( A) B A ( B);

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

;

A

 

E

 

E

 

A

A;

 

0

 

 

 

1

 

 

 

0

 

 

 

n

m

 

0

 

0

 

0

m n

 

 

 

 

m n

 

 

 

 

 

 

 

 

 

 

 

 

 

A

 

O

 

 

O

 

,

 

 

0

0

 

 

1

0

 

 

0

0

 

 

n l

m l

 

 

 

 

 

 

 

m n

 

 

 

 

 

 

1

0

 

 

0

0

 

 

1

0

 

O

A

 

 

O

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

l m

m n

 

l n

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Розділ 1. ЛІНІЙНА АЛГЕБРА

 

 

 

 

 

 

9

 

 

 

 

 

 

 

 

Переставні матриці. Якщо

Одинична матриця En та нульова

 

 

 

 

матриці A та B справджують

матриця On

порядку n переставні з

 

 

співвідношення AB BA, то їх

 

 

називають переставними.

 

будь-якою квадратною матрицею того

 

 

 

ж порядку.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

AEn EnA A

 

 

 

 

 

 

 

 

 

OnA AOn

On

 

 

 

 

 

 

Натуральний степінь k

Матричний многочлен. Якщо

 

 

 

 

квадратної матриці A розуміють як*

f(x) akx

k

... a1x a0, то

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Ak AA...A; A0

def

многочленом f (A) від матриці A

 

 

 

 

E .

називають матрицю

 

 

 

 

 

 

 

n n

n

 

 

 

 

 

 

k разів

 

 

 

 

 

Ak ... a A a

 

 

 

 

 

 

 

 

f (A) a

E

n

.

 

 

 

 

 

 

 

k

 

1

0

 

 

 

1.5. Транспонування матриць

 

Транспонування матриці. Заміну

 

 

 

 

 

 

 

 

 

T

 

 

 

 

 

 

 

 

 

|

|

 

 

 

|

 

 

рядків матриці на її стовпці, а стовпців

 

 

 

 

 

 

 

 

 

 

 

 

 

 

— на рядки, називають

 

 

 

 

 

 

1

a

2

 

 

n

 

 

a

 

 

a

 

 

транспонуванням матриці.

 

 

|

 

 

 

|

 

 

|

 

 

 

 

 

Матрицю, розміром n m, яку

 

 

 

 

 

 

 

 

 

 

 

 

 

T

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(a1)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

одержують з матриці A розміром

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

T

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

m n транспонуванням стовпців

 

 

 

 

 

(a

2

)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(рядків), називають транспонованою

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

T

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

T

 

 

 

 

матрицею до A і позначають A .

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(a

 

)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

aT

 

 

 

 

 

 

 

 

 

 

 

 

n

 

 

 

 

 

a

ji

,i 1,m, j 1,n

 

 

 

 

 

 

 

 

 

 

 

 

ij

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Властивості транспонування

Симетрична і кососиметрична

 

матриць.

 

 

 

 

 

 

матриця. Матрицю A називають

 

(AT )T

A

 

 

 

 

 

 

симетричною, якщо

 

 

 

 

 

 

(A B)T AT BT

 

 

AT A,

 

 

 

 

( A)T

AT

і кососиметричною, якщо

 

(AB)T BTAT

 

 

AT A.

 

 

 

 

 

 

 

 

 

 

 

 

Добуток будь-якої матриці на

 

 

 

 

 

 

 

 

 

транспоновану до неї матрицю є

 

 

 

 

 

 

 

 

 

симетричною матрицею.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

* Матрицю A можна помножити саму на себе тоді й лише тоді, коли вона квадратна.

10 Розділ 1. ЛІНІЙНА АЛГЕБРА

1.6. Індуктивне означення визначника

Визначник матриці. Визначником

Обчислення визначника 3-го

(детермінантом) квадратної матриці

порядку

 

 

 

 

 

 

 

 

 

 

 

A називають число

A

detA, яке

 

 

 

 

 

 

 

a

a

 

a

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a11

a12

 

a13

 

 

 

обчислюють за правилом

 

 

 

 

 

 

 

 

При n 1 :

 

 

 

 

 

 

 

a3121

a3222

 

a2333

 

 

 

 

 

 

 

 

 

a11 1 2 M11

 

 

 

 

 

a11

 

a11.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a12 1 3 M12 a13 1 4 M13

При n 1:

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

n

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

detA ( 1)1 k a1kM1k ,

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a

 

 

a

a

 

 

a22

a23

 

 

 

 

 

 

 

 

 

 

 

 

 

 

k 1

M

 

11

 

 

12

13

 

 

;

 

 

 

a

 

 

a

a

 

 

 

 

 

 

 

 

 

11

 

 

21

 

22

23

 

 

a32

a33

 

де M

 

— визначник матриці порядку

 

 

 

 

a31

 

 

a32

a33

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1k

 

 

 

 

 

 

 

 

 

 

a

 

 

 

a

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(n 1), яку одержано з матриці A

 

 

 

 

 

 

a

 

 

a21

a23

 

 

 

 

 

 

 

 

 

 

M

 

 

 

a11

 

 

a12

a13

 

 

;

викреслюванням 1-го рядка та k -го

12

 

 

 

 

21

 

22

23

 

 

a31

a33

 

 

 

 

a31

 

 

a32

a33

 

 

 

стовпця .

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a

 

a

 

a

 

 

a21

a22

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

M

 

 

 

11

 

12

 

13

 

 

.

 

 

 

 

 

 

 

 

 

a

 

a

 

a

 

 

 

 

 

 

 

 

 

13

 

21

22

 

23

 

 

a31

a32

 

 

 

 

 

 

 

 

 

 

 

 

a31

 

a32

 

a33

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Доповняльний мінор. Визначник

Алгебричне доповнення. Число

матриці, одержаної викреслюванням з

 

 

 

 

 

 

Aij ( 1)i j Mij

 

 

матриці A i -го рядка та j -го стовпця

 

 

 

 

 

 

 

 

називають доповняльним мінором Mij

називають алгебричним доповненням

елемента a .

елемента aij .

 

 

 

 

 

 

 

 

 

 

ij

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Визначник для неквадратних матриць не означують.

Визначник матриці порядку n означують через визначники матриць порядку (n 1). Визначник матриці порядку n є числом, що дорівнює сумі добутків з n елементів матриці, узятих по одному з кожного рядка та кожного стовпця матриці з певним знаком.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]