
- •Лекция №9 электромагнетизм магнитное поле. Индукция магнитного поля
- •Линии магнитной индукции
- •Магнитный поток.
- •Теорема гаусса для магнитного поля
- •Работа по перемещению проводника с током в магнитном поле
- •Явление электромагнитной индукции
- •Закон электромагнитной индукции.
- •Лекция №10 индуктивность
- •Индуктивность соленоида
- •Явление и закон самоиндукции
- •Энергия магнитного поля
- •Электромагнитное поле вихревое электрическое поле
- •Ток смещения
- •Уравнения максвелла
- •Электромагнитные волны
- •Волновые свойства света
- •Интерференция волн
- •Лекция №13 принцип гюйгенса
- •Оптическая пирометрия
- •Лекция № 14 опыт резефорда. Планетарная модель атома
- •Постулаты бора
- •Линейчатые спектры и закономерности в них
- •Боровская теория атома водорода
- •Гипотеза де бройля
- •Корпускулярно-волновой дуализм
- •Принцип неопределённостей гейзенберга
- •Уравнение шрёдингера
- •Лекция №16 элементы ядерной физики состав атомного ядра
- •Ядерные силы.
- •Энергия связи ядра
- •Радиоактивность
- •Закон радиоактивного распада
- •Ядерные реакции и законы сохранения
- •Ядерная цепная реакция
- •Термоядерные реакции
Волновые свойства света
С точки зрения волновой теории свет представляет собой электромагнитные волны с частотой , лежащей в интервале от 0,41015 до 0,751015 Гц. Диапазон световых волн чаще выражают в длинах волн в вакууме (практически в воздухе). Используя соотношение длины световой волны с частотой колебания ( = c/, где c = 3108 м/с — скорость света в вакууме), находим, что длины волн света в вакууме заключены в пределах от 0,75 до 0,4 мкм. Установлено, что цветовое воздействие света на глаз человека обусловлено его частотой. Так, световые волны с частотой 0,4·1015 Гц воспринимаются как красный свет, а с частотой 0,75·1015 Гц — как фиолетовый. Показано также, что световые волны, отличающиеся по длине волны менее чем на 2 нм, воспринимаются как одноцветные.
Интерференция волн
Интерференцией волн называют явление усиления и ослабления волн в определённых точках пространства при их наложении. Интерферировать могут только когерентные волны. Когерентными называются волны (источники), частоты которых одинаковы и разность фаз колебаний не зависит от времени. Геометрическое место точек, в которых происходит усиление или ослабление волн соответственно называют интерференционным максимумом или интерференционным минимумом, а их совокупность носит название интерференционной картины. В связи с этим можно дать иную формулировку явления. Интерференцией волн называется явление наложения когерентных волн с образованием интерференционной картины.
Рассмотрим процесс наложения двух когерентных волн любой природы (механические, электромагнитные). Пусть эти волны создаются когерентными источниками O1 и O2, находящимися в одной среде, амплитуды и циклические частоты которых одинаковы и равны А и , а начальные фазы равны нулю. Расстояние между источниками О1 и О2 намного меньше расстояний х1 и х2 от источников до точки наблюдения М. Тогда волны от источников О1 и О2 распространяются практически параллельно, и вызываемые ими колебания в точке M (рис. 3) находим, используя уравнение плоской монохроматической волны (см. (1)):
(4)
где
1
и 2
—
мгновенные значения колеблющейся
величины; —
длина волны в данной среде; x1
и x2
—
расстояние от источников до точки
наложения волн. Результирующее колебание
s
равно алгебраической сумме колебаний,
обусловленных отдельными волнами,
поскольку колебания происходят в одном
направлении, т.е.
Используя соотношение
и полагая
и
,
получаем:
Выражение
(5)
Рис.
3Таким образом, в произвольной
точке М
происходят гармонические колебания с
той же циклической частотой ,
амплитуда которых зависит от геометрической
разности (х2
– х1)
хода волн. Найдём условия усиления и
ослабления колебаний в различных точках
пространства. Очевидно, что амплитуда
В результирующих
колебаний будет максимальной в тех
точках, для которых
Это возможно, если
,
гдеm
= 0, 1,
2,
.
Отсюда
x2x1=m (6)
где m называют порядком интерференционного максимума. Из этого выражения следует, что когерентные волны, распространяющиеся в одной среде, усиливаются в точках, для которых геометрическая разность хода равна целому числу длин волн. Следовательно, соотношение (6) является условием интерференционного максимума.
Интенсивность результирующей волны будет наименьшей во всех точках,
для
которых
т.е. когда
Отсюда
x2x1= (m+ 1/2), (7)
т.е. когерентные волны, распространяющиеся в одной среде, ослабляются в точках, для которых геометрическая разность хода равна полуцелому числу длин волн. Поэтому соотношение (7) является условием интерференционного минимума.
Изложенная теория интерференции справедлива для волн любой природы, в том числе для световых волн. Однако интерференционная картина световых волн может наблюдаться только в специальных условиях. Действительно, при наложении света одинакового цвета, испускаемого двумя независимыми источниками, например лампами накаливания, интерференция не происходит, поскольку эти источники некогерентные. В этом случае наблюдается суммирование интенсивностей световых волн. Для того чтобы наблюдать интерференцию света, надо излучение от одного и того же источника разделить на два пучка и заставить их затем попасть на экран различными путями. Это достигается за счёт отражения и преломления света. Рассмотрим один из методов наблюдения интерференции световых волн — бипризму Френеля. Бипризма (БП) состоит из двух стеклянных призм с малыми преломляющими углами, сложенных своими основаниями. Источником света служит ярко освещённая щель О, установленная параллельно ребру бипризмы (рис. 4). После преломления в бипризме пучок света разделяется на два пучка когерентных волн. В области АБ экрана Э волны налагаются, и возникает интерференционная картина в виде светлых и тёмных параллельных интерференционных полос.
Рис.
4
С интерференцией волн тесно связано другое важное явление — дифракция. Дифракцией называется явление огибания волнами препятствий. Дифракция зависит от соотношения размеров препятствия и длины волны. Она проявляется заметным образом, если размеры препятствий и длины волны соизмеримы. Поэтому дифракция звуковых волн наблюдается легко, а в случае света, длина волны которого много меньше размеров препятствий, наблюдается в специальных условиях. Так, можно через приоткрытую дверь слышать собеседников в соседней комнате, даже если вы их не видите. На языке оптики дифракция означает проникновение света в область геометрической тени.