
- •Содержание Лекция 1. Введение. Общие сведения о Земле.
- •1.1. Инженерная геология (иг), ее задачи и содержание. Иг как наука о рациональном использовании и охране геологической среды
- •1.2.Общие сведения о Земле
- •Лекция 2. Минералы и горные породы. Процессы их образования, классификации, основные свойства.
- •2.1. Определения и основные сведения.
- •2.2. Магматические горные породы (мгп)
- •2.3.Осадочные горные породы (огп)
- •2.3.1. Обломочные огп
- •2.3.2. Глинистые огп
- •2.3.3. Химические и биохимические огп
- •2.4. Метаморфические горные породы (ммгп)
- •Лекция 3. Основы геохронологии. Эндогенные процессы.
- •3.1. Абсолютный и относительный возраст горных пород. Геохронологическая шкала.
- •3.2. Тектонические движения (тд) и дислокации.
- •3.3. Платформы и геосинклинали
- •3.4. Сейсмические явления – землетрясения
- •Лекция 4. Основы грунтоведения
- •4.1. Строительная классификация грунтов
- •4.2. Физические показатели, их использование в классификациях грунтов
- •4.3. Состав дисперсных грунтов
- •4.4. Структура и структурные связи. Природное и нарушенное состояния грунтов. Сжимаемость и прочность грунтов
- •Лекция 5. Подземные воды
- •5.1.Общие сведения и значение подземных вод (пв)
- •5.2. Физические свойства и химический состав пв
- •5.3. Виды пв по условиям залегания
- •5.4.Закономерности движения подземных вод
- •Лекция 6. Экзогенные процессы. Выветривание и элювий. Геологическая работа атмосферных вод
- •6.1. Выветривание, его виды
- •6.2. Кора выветривания и элювиальные отложения
- •6.3. Геологическая работа атмосферных вод
- •Лекция 7. Геологическая работа рек и аллювиальные отложения
- •Лекция 8. Геологическая деятельность морей, озер и болот
- •8.1. Геологическая деятельность морей и морские отложения
- •8.2. Озера и озерные отложения
- •8.3. Болота и болотные отложения. Строительная оценка болот
- •Лекция 9. Геологическая работа ледников и ледниковые отложения
- •Лекция 10.Геологическая работа ветра. Образование и свойства эоловых отложений. Человек как геологический фактор. Техногенные отложения.
- •10.1. Геологическая работа ветра и эоловые отложения
- •10.2. Геологическая деятельность человека. Техногенные отложения
- •Лекция 11. Геологические процессы, обусловленные действием поверхностных и подземных вод
- •Лекция 12. Геологические процессы, обусловленные действием силы тяжести
- •12.1. Обвалы
- •12.2. Осыпи
- •12.3. Оползни
- •12.4. Горное давление и сдвижение горных пород
- •13.1. Сезонное промерзание и морозное пучение грунтов
- •13.2. Вечная мерзлота. Общие сведения и классификации.
- •13.3. Геологические процессы и явления в области вечной мерзлоты
4.4. Структура и структурные связи. Природное и нарушенное состояния грунтов. Сжимаемость и прочность грунтов
Для дисперсных грунтов в понятие «структура» включается представление о связях между отдельными частицами. Если такие связи отсутствуют или имеют временный характер, грунты называются несвязными и прочность их всецело обусловлена трением. Прочность и сжимаемость связных, глинистых грунтов зависит не только от трения, но, прежде всего, от характера структурных связей.
Установлено, что глинистые грунты обладают структурными связями двух типов: водно-коллоидные (ВКС); цементационные (ЦС).
ВКС возникают еще в процессе накопления и уплотнения осадка; это «наследие» коллоидной формы его существования. Они зависят от толщины оболочек связанной воды, характера ионов, внешних условий. В зависимости от этих факторов ВКС могут ослабевать или восстанавливаться.
ЦС возникают как вторичные на некоторой стадии диагенеза вследствие цементирующего действия различных веществ (например, солей) на поверхности частиц. Это хрупкие, невосстанавливающиеся связи.
Преобладание связей того или иного типа сразу сказывается на свойствах грунта. Оно проявляется также при сопоставлении прочности образцов грунта природного и нарушенного сложения. В последнем случае грунт переминается и формуется вновь с сохранением первоначальных плотности и влажности. Очевидно, при этом ЦС утрачиваются полностью, а ВКС лишь частично, восстанавливаясь со временем.
Отношение прочности в природном и нарушенном состояниях называется коэффициентом чувствительности или структурной прочности. Обычно он равен 2…4, но для некоторых особо чувствительных грунтов возрастает до нескольких десятков.
Нарушение структурных связей не обязательно связано с полным перемятием грунта. Воздействия динамического характера (удары, вибрация и др.), связанные, например, с производством работ, могут привести к существенному разупрочнению грунта, если в нем преобладали ВКС. Такое разупрочнение, вплоть до перехода в текучее состояние, называют тиксотропным. Его механизм связывается с трансформацией части пленочной воды, а также защемленной в порах грунта ( иммобилизованной) в свободную гравитационную воду. После устранения воздействий ВКС постепенно восстанавливаются и грунт упрочняется.
Это характерно для условий забивки свай в глинистые грунты. Нагружать сваи можно лишь спустя некоторое время после забивки – после «отдыха» грунта. Тиксотропия проявляется и в природных условиях.
Преобладание ЦС уменьшает деформации уплотнения, набухания и усадки. До определенных давлений при уплотнении и пороговых влажностей набухания и усадки ЦС тормозят процесс. При разрушенных ЦС процессы развиваются активнее: при прочих равных условиях грунты нарушенного сложения сильнее уплотняются, дают большие деформации набухания, быстрее размокают. При строительстве Верхнесвирской ГЭС котлован в 1941 г. был затоплен и осушен лишь через семь лет; при этом откосы в глинистых породах, сохранивших природное сложение, не оползли, тогда как такие же породы в отвалах были в состоянии, близком к текучему.
Рассмотренные характеристики состава и состояния грунтов, их структура определяют сжимаемость и прочность грунтов. Сжимаемость грунтов характеризуется модулем деформации и коэффициентом бокового расширения. Прочностные показатели – сопротивление грунта сдвигу, коэффициент внутреннего трения и сцепление. Вопросы сжимаемости и прочности грунтов детально рассматриваются в последующем курсе «Механика грунтов».