
- •Раздел 8. Устойчивость сжатых стержней
- •Влияние способов закрепления концов стержня
- •Найдем отношение или Обозначим (с)
- •С учетом (8.14)условие устойчивости (в) получит вид
- •Практические методы расчета стержней на устойчивость
- •Условие устойчивости по (8.15).
- •Устойчивость стержней в упруго-пластической зоне
Найдем отношение или Обозначим (с)
Получим
(8.14)
еще
называют коэффициентом
продольного изгиба
в Строительных Нормах. Для ряда значений
гибкости
,
по вышеприведенным формулам или графикам
(рис. 8.4) можно найти величины
.
Далее, зная
или
и выбрав коэффициенты
и
,
по зависимости (С) можно составить для
данного материала таблицы значений
коэффициента
в функции от гибкости
,
т.е.
.
Такие
таблицы приводятся в учебниках и
задачниках по сопротивлению материалов.
Пользуясь этими таблицами удобно
подбирать сечения сжатых стержней.
С учетом (8.14)условие устойчивости (в) получит вид
(8.15)
Отсюда следует формула, удобная для подбора размеров сечений
(8.16)
Практические методы расчета стержней на устойчивость
I. Проверка сжатой колонны на устойчивость
Дано:
колонна изготовлена из двух стандартных
двутавров №30, высотой
м,
нижний конец забетонирован в пол, верхний
свободен (
)
и нагружен силой
т.
|
На
рис. показано поперечное сечение
колонны. Стыковка двутавров по высоте
колонны осуществляется сваркой. Из
таблиц ГОСТа для двутавра №30 находим:
|
Прежде
всего решаем вопрос,
относительно какой оси
или
сечения колонны возможна потеря
устойчивости. Как указано выше, для
этого надо вычислить
и
:
Вычисление
осложняется тем, что в ГОСТе приводятся
(относительно оси
),
а продольный изгиб колонны возможен
относительно оси
(см. рис.). Надо вычислить
:
,
где
,
см4,
см,
.
Итак
:
;
.
Следовательно
и продольный изгиб колонны возможен
относительно оси
(т.е. в плоскости
).
Далее возможны два пути:
а)
таблиц
нет
В
этом случае определяем по
формулу для вычисления
из возможных:
или
формула Ясинского
формула Эйлера
Для
Ст.3, из которых изготовлены двутавры,
как было указано выше
,
кг/см2.
У нас
,
поэтому выбираем формулу Эйлера
кг/см2
Выберем
коэффициент запаса устойчивости.
Допускаемое
кг/см2
Проверим устойчивость колонны:
Условие
устойчивости выполняется, следовательно,
колонна выдержит
т
без потери устойчивости.
в)
имеются
таблицы
для Ст.3
по
таблице найдем:
Для
Условие устойчивости по (8.15).
где
кг/см2
для Ст.3
Условие устойчивости выполняется.
II. Проектирование колонны из стандартных профилей
Рис.8.5 |
Проектирование рациональной колонны включает три обязательных пункта:
|
Прежде
всего решается вопрос,
относительно какой центральной оси
сечения колонны
или
возможна потеря устойчивости. Для
сечения колонны, показанного на рис.
8.5 в, этот вопрос решается так:
размер
«»
не задается, поэтому увеличивая его
увеличивается
(
и
табличные значения из ГОСТа профилей);
т.к.
тоже увеличивается,
при этом уменьшается, а
не зависит от размера
.
Следовательно, увеличивая «
»
всегда можно добиться, чтобы
,
а это значит, что возможный продольный
изгиб будет относительно оси
(в плоскости
).
Обычно принимают условие равноустойчивости
колонны, т.е.
,
из которого и определяется расстояние
«
».
Примечание:В
предыдущем примере (I.
Проверка на устойчивость) было получено,
,
т.е. колонна из двутавров не равноустойчива
и не рациональна. Если двутавры раздвинуть
на некоторое расстояние
(т.е. увеличить «
»),
можно получить равноустойчивую колонну,
которая выдержит значительно большую
нагрузку
.
1. Подбор номера профилей.
Используем
формулу (8.16)
.
Здесь площадь
зависит от
,
а
зависит от
,
где
.
В итоге получим, что искомая площадь
сама зависит от
.
Поэтому задача решается методом попыток:
1
попытка:
в (8.16)
неизвестна, но
,
поэтому вначале примем
и найдем суммарную площадь сечения
колонны
.
Далее
площадь одного профиля (
).
По величине
из табл. ГОСТа находим ближайший номер
профиля и для него
.
Вычисляем гибкость
и по ней из таблиц
уточняем
,
т.е. получим
.
2
попытка:
в (8.16) подставим
и снова повторим расчет (как в 1 попытке)
до определения
.
Здесь уже делаем проверку на устойчивость
по (8.15)
.
Здесь
табличное значение площади найденного
профиля.
Колонна
будет оптимальной, если условие
устойчивости (8.15) понимать как
приблизительное равенство (допускаемая
перегрузка до 5% от
).
Если условие (8.15) не выполняется, или
левая часть значительно меньше
(выбраны слишком большие номера профилей),
делаем следующую попытку с
до определения
(можно просто изменять в необходимую
сторону номера профилей) и снова проверяем
устойчивость
и т.д. Обычно требуется 34
попытки.
2.
Определив
номер стандартных швеллеров найдем
расстояние «»
из принятого выше условия равноустойчивости
или
,
откуда
.
Тогда
(а).
С другой стороны
(в)
Здесь
расстояние между осями
и
,
определяется из рис. 8.5 в:
(с)
Приравниваем
(а) и (в):
,
откуда найдем размер «
»,
а из (с) вычислим «
».
3.
Расстояние «»
межу планками находится из условия,
чтобы гибкость
каждого стандартного швеллера колонны
между планками относительно оси
,
была не больше гибкости всей колонны
,
найденной в последней попытке п.1, т.е.
(d)
Планки
к швеллерам крепятся сваркой или болтами
(заклепками). На практике обычно принимают
как для стержней с двумя шарнирными
концами. Тогда из (d)
найдем
.
Необходимое
число планок «»
в колонне
округляется до целого числа.
Действительное
расстояние
между планками
Планки
ставятся с двух сторон колонны, как
показано на рис. 8.5в, т.е. надо
планок.