
- •Программный комплекс для расчета
- •Краткое описание метода конечных элементов для линейных задач.
- •Общие положения
- •Библиотека конечных элементов для линейных задач.
- •Универсальный стержень (кэ 10)
- •Универсальные конечные элементы балок-стенок, тонких плит и пологих оболочек (типы кэ 11, 12, 21-24,27, 30, 41, 42, 44)
- •Универсальные конечные элементы пространственной задачи теории упругости (кэ 31-34,36)
- •Специальные конечные элементы (кэ 51, 53,54,55)
- •Решение системы канонических уравнений
- •Расчет на динамические воздействия
- •Суперэлементное моделирование
- •Принципы определения расчетных сочетаний усилий (рсу)
- •Стержни
- •Плоское напряженное состояние
- •Оболочки
- •Объемные элементы
- •Загружения
- •Расчет на устойчивость
- •Решение нелинейных задач
- •Общие положения
- •Расчет физически нелинейных задач
- •Библиотека законов деформирования материалов
- •Типы дробления сечений стержней
- •Типы арматурных включений
- •Библиотека конечных элементов для физически нелинейных задач
- •Стержневые конечные элементы (кэ 210 и 205)
- •Конечные элементы тонких пластин и пологих оболочек (кэ 221-224, 227, 230, 241, 242, 244)
- •Конечные элементы плоской деформации грунтов (кэ 281, 282, 284)
- •Конечные элементы для решения пространственной задачи теории упругости (кэ 231-234, 236)
- •Библиотека конечных элементов для геометрически нелинейных задач
- •Универсальный стержневой элемент (кэ - 310)
- •Конечный элемент предварительного натяжения (кэ 308)
- •Конечные элементы тонких пологих оболочек (кэ 341, 342, 344)
- •Специальные конечные элементы односторонних связей
- •Одноузловой элемент односторонней связи (тип кэ-261)
- •Двухузловой элемент одностоpонней связи (тип кэ - 262)
- •Специализированный процессор монтаж для расчета сооружений в стадии возведения
- •Замечания по составлению расчетных схем и некоторые пояснения.
- •Принципы построения конечно-элементных моделей
- •Рациональная разбивка на конечные элементы
- •Глобальная, местная и локальная системы координат
- •Объединение перемещений
- •Абсолютно жесткие вставки
- •Угол чистого вращения
- •Моделирование податливости узлов сопряжения элементов
- •Моделирование шарниров в стержневых и плоскостных элементах
- •Расчет на заданные перемещения
- •Введение связей конечной жесткости
- •Расчет на температурные воздействия
- •Моделирование предварительного напряжения
- •Учёт прямой и косой симметрии
- •Вычисление коэффициентов постели упругого основания
- •Учет работы конструкций совместно с упругим основанием
- •Расчет оболочек и плит, подкреплённых рёбрами
- •Задание весов масс и динамических воздействий
- •Сбор нагрузок на фундаменты
- •Расчетные сочетания нагрузок
- •Согласованная система координат для пластин
- •Принципы анализа результатов расчета
- •Правила знаков при чтении результатов расчета.
- •Результаты расчета на динамические воздействия
- •Суммарные усилия от динамических воздействий
- •Документирование
- •Жесткостные характеристики элементов
- •Проверка прочности по различным теориям
- •Главные напряжения
- •Кэ плоской задачи теории упругости
- •Кэ плиты
- •Кэ объемного ндс
- •Кэ оболочки
- •Вид ндс
- •Стержневые кэ
- •Вычисление эквивалентных напряжений
- •Результаты расчета
- •Расчет и проектирование стальных конструкций
- •Назначение и возможности
- •Проектируемые сечения
- •Задание дополнительных данных для расчета
- •Конструктивные и унифицированные элементы
- •Проверки несущей способности элементов
- •Описание алгоритмов
- •Сквозной расчет
- •Локальный расчет
- •Представление результатов расчета
- •Подбор и проверка армирования в железобетонных элементах
- •Армирование стержневых элементов
- •Проверка заданного армирования
- •Армирование пластинчатых элементов
Специальные конечные элементы (кэ 51, 53,54,55)
Предназначены для ограничения линейных и угловых перемещений по направлениям осей координат, для введения связей конечной жесткости по направлениям осей координат, а также для учета податливости материала между смежными узлами (например, податливость ростверка или металлических прокладок между элементами).
КЭ, моделирующий связи конечной жесткости (тип КЭ-51)
Данный КЭ применяется для введения связи конечной жесткости по направлению одной из осей глобальной или локальной системы координат узла. Так, например, для степени свободы Z конечный элемент позволяет смоделировать работу пружины или упругого основания.
Законтурный двухузловой КЭ упругого основания (тип КЭ-53)
Данный КЭ применяется для моделирования отпора полосы грунта за пределами плиты. Полоса грунта при этом располагается перпендикулярно к контуру плиты. Учет отпора за контуром происходит за счет работы грунта на сдвиг. В каждом из узлов имеется по одной степени свободы – перемещение вдоль глобальной оси Z.
Законтурный одноузловой КЭ упругого основания (тип КЭ-54)
Данный КЭ применяется для моделирования отпора угловой зоны грунта, примыкающего к углу плиты. Учет отпора в зоне, примыкающей к углу, происходит за счет работы грунта на сдвиг. В каждом из узлов имеется по одной степени свободы – перемещение вдоль глобальной оси Z.
КЭ, моделирующий упругую связь между узлами (тип КЭ-55)
Данный КЭ предназначен для учета податливости материала между смежными узлами. Элемент описывается двумя узлами, в каждом из которых имеется по шесть степеней свободы, определенных относительно осей глобальной системы координат. Таким образом, элемент позволяет смоделировать как линейную, так и угловую податливость связи относительно осей X, Y, Z общей системы координат. Узлы, между которыми моделируется податливость, могут иметь одинаковые координаты.
Конечный элемент приспосабливается к признаку схемы.
Решение системы канонических уравнений
После того, как заданная конструкция представлена в виде конечно-элементной схемы, задача об определении перемещений узлов сводится к решению системы линейных алгебраических уравнений вида
АХ=В(2.1)
где:А -симметричная положительно определенная матрица размеромN * N ;
В-матрица правых частей (загружений) размеромN * k (k= количество загружений);
Х—искомая матрица перемещений размеромk * N.
Поскольку в большинстве случаев матрицаАявляется разреженной, то для уменьшения требуемой оперативной памяти, внешней памяти и времени счета предварительно производится упорядочение неизвестных системы (2.1) с целью минимизации профиля матрицы. Реализовано несколько методов упорядочения, а именно, обратный алгоритм Катхилла-Макки, алгоритм «фактор деревьев», метод вложенных сечений и алгоритм параллельных сечений. Пользователю предоставлена возможность выбора метода упорядочения. По умолчанию используется обратный алгоритм Катхилла-Макки, так как у этого метода минимальные запросы к оперативной памяти. Конкретные рекомендации для выбора метода упорядочения не могут быть даны, так как эффективность того или иного алгоритма существенно зависит от структуры конкретной матрицы А.
Для решения системы (2.1) предварительно производится треугольное разложение матрицы А.
Если в процессе треугольного разложения матрицы Авыясняется, чтоАвырождена, то производится автоматическое наложение связей, которые обеспечивают геометрическую неизменяемость. При этом пользователю предоставляется информация о номерах узлов и номерах степеней свободы, по которым произведено наложение связей. В этом случае рекомендуется внимательно проанализировать расчетную схему и выяснить происхождение геометрической изменяемости конструкции.
Дополнительным сервисным средством является контроль решения системы (2.1). При появлении сообщения о большой величине ошибки решения, которое ,как правило, является следствием плохой обусловленности матрицы А,следует внимательно проанализировать величины перемещений узлов и убедиться в том, что полученное решение является приемлемым с инженерной точки зрения.