
- •Программный комплекс для расчета
- •Краткое описание метода конечных элементов для линейных задач.
- •Общие положения
- •Библиотека конечных элементов для линейных задач.
- •Универсальный стержень (кэ 10)
- •Универсальные конечные элементы балок-стенок, тонких плит и пологих оболочек (типы кэ 11, 12, 21-24,27, 30, 41, 42, 44)
- •Универсальные конечные элементы пространственной задачи теории упругости (кэ 31-34,36)
- •Специальные конечные элементы (кэ 51, 53,54,55)
- •Решение системы канонических уравнений
- •Расчет на динамические воздействия
- •Суперэлементное моделирование
- •Принципы определения расчетных сочетаний усилий (рсу)
- •Стержни
- •Плоское напряженное состояние
- •Оболочки
- •Объемные элементы
- •Загружения
- •Расчет на устойчивость
- •Решение нелинейных задач
- •Общие положения
- •Расчет физически нелинейных задач
- •Библиотека законов деформирования материалов
- •Типы дробления сечений стержней
- •Типы арматурных включений
- •Библиотека конечных элементов для физически нелинейных задач
- •Стержневые конечные элементы (кэ 210 и 205)
- •Конечные элементы тонких пластин и пологих оболочек (кэ 221-224, 227, 230, 241, 242, 244)
- •Конечные элементы плоской деформации грунтов (кэ 281, 282, 284)
- •Конечные элементы для решения пространственной задачи теории упругости (кэ 231-234, 236)
- •Библиотека конечных элементов для геометрически нелинейных задач
- •Универсальный стержневой элемент (кэ - 310)
- •Конечный элемент предварительного натяжения (кэ 308)
- •Конечные элементы тонких пологих оболочек (кэ 341, 342, 344)
- •Специальные конечные элементы односторонних связей
- •Одноузловой элемент односторонней связи (тип кэ-261)
- •Двухузловой элемент одностоpонней связи (тип кэ - 262)
- •Специализированный процессор монтаж для расчета сооружений в стадии возведения
- •Замечания по составлению расчетных схем и некоторые пояснения.
- •Принципы построения конечно-элементных моделей
- •Рациональная разбивка на конечные элементы
- •Глобальная, местная и локальная системы координат
- •Объединение перемещений
- •Абсолютно жесткие вставки
- •Угол чистого вращения
- •Моделирование податливости узлов сопряжения элементов
- •Моделирование шарниров в стержневых и плоскостных элементах
- •Расчет на заданные перемещения
- •Введение связей конечной жесткости
- •Расчет на температурные воздействия
- •Моделирование предварительного напряжения
- •Учёт прямой и косой симметрии
- •Вычисление коэффициентов постели упругого основания
- •Учет работы конструкций совместно с упругим основанием
- •Расчет оболочек и плит, подкреплённых рёбрами
- •Задание весов масс и динамических воздействий
- •Сбор нагрузок на фундаменты
- •Расчетные сочетания нагрузок
- •Согласованная система координат для пластин
- •Принципы анализа результатов расчета
- •Правила знаков при чтении результатов расчета.
- •Результаты расчета на динамические воздействия
- •Суммарные усилия от динамических воздействий
- •Документирование
- •Жесткостные характеристики элементов
- •Проверка прочности по различным теориям
- •Главные напряжения
- •Кэ плоской задачи теории упругости
- •Кэ плиты
- •Кэ объемного ндс
- •Кэ оболочки
- •Вид ндс
- •Стержневые кэ
- •Вычисление эквивалентных напряжений
- •Результаты расчета
- •Расчет и проектирование стальных конструкций
- •Назначение и возможности
- •Проектируемые сечения
- •Задание дополнительных данных для расчета
- •Конструктивные и унифицированные элементы
- •Проверки несущей способности элементов
- •Описание алгоритмов
- •Сквозной расчет
- •Локальный расчет
- •Представление результатов расчета
- •Подбор и проверка армирования в железобетонных элементах
- •Армирование стержневых элементов
- •Проверка заданного армирования
- •Армирование пластинчатых элементов
Глобальная, местная и локальная системы координат
В ПК ЛИРА на уровне задания, обработки и анализа принимаются три системы координат:
- глобальная (или общая)
- местная
- локальная.
Глобальная система координат XYZ- всегда правая декартовая - служит для описания координат узлов всей схемы, для определения направления степеней свободы, идентификации перемещений узлов.
Местная система координат X1 Y1 Z1 - всегда правая декартоваяявляется атрибутом каждого конечногоэлемента. Общее правило ориентации местной системы координат для элемента следующее. Ось Х1направлена от первого узла ко второму. Направление осей Y1, и Z1определяется для стержней углом чистого вращения, а для плоскостных элементовплоскостью элемента. Местная система координат служит для задания местной нагрузки, идентификации усилий и напряжений в элементе и ориентации арматуры.
Локальная система координат X2 Y22 Z2всегда правая декартоваяявляется атрибутом каждогоузла схемы. В общем случае локальная система координат совпадает с глобальной. Однако локальная система координат оказывается удобной при работе с цилиндрическими, сферическими схемами или при наложении связей и расчете на заданные перемещения по направлениям, не совпадающим с глобальной системой координат. При расчете цилиндрических или сферических конструкций удобно оперировать цифровыми значениями радиальных, меридиональных и широтных перемещений. При расчете на заданные перемещения или при наличии связей, не совпадающих с направлением глобальной системы координат можно также применять локальную систему координат.
Объединение перемещений
В ПК ЛИРА предусмотрена возможность задания информации об узлах, имеющих одинаковые перемещения по заданному направлению. Эти перемещения получают один порядковый номер, то есть происходит объединение нескольких неизвестных в системе линейных алгебраических уравнений.
Такой прием позволяет объединять горизонтальные перемещения узлов, принадлежащих перекрытию в плоских многоэтажных рамах, показывая тем самым, что перекрытия представляет собой жесткий диск: продольная сила, могущая возникнуть в перекрытии, ничтожно мала по сравнению с сечением перекрытия, которое её воспринимает.
Очень удобен такой приём в задачах с динамическими воздействиями от ветра или сейсмики в горизонтальном направлении. В этом случае инерционная масса всего перекрытия собирается в один (любой) узел перекрытия.
Сложнее объединять перемещения в пространстве по этажам перекрытия.
Для симметричной многоэтажной рамы, например, можно пренебречь закручиванием её вокруг вертикальной оси. Тогда достаточно объединить перемещения всех узлов перекрытия по направлениям ,, и схема в этом случае упрощается.
Для случаев, когда центр жёсткости здания не совпадает с центром масс, а также для несимметричных в плане зданий (особенно при недостаточной расстановке диафрагм жёсткости) закручиванием здания пренебречь нельзя. Здесь следует объединять горизонтальные перемещения на уровне перекрытия по рамам. Если считать, что диск перекрытия не может изменять своей формы, то необходимо ещё и объединение перемещений для всего перекрытия по повороту относительно оси . Возникает необходимость учесть работу плиты перекрытия установкой, например, крестовых связей. При динамических воздействиях инерционные массы придется прикладывать к каждой из рам на уровне каждого этажа.
Уменьшить число инерционных масс можно с помощью искусственно введённых в расчетную схему траверс. Инерционная масса будет распределяться между рамами на этаже в зависимости от соотношения длины и жёсткости траверс.