Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Скачиваний:
27
Добавлен:
11.05.2015
Размер:
777.73 Кб
Скачать

Вопрос 8

Момент импульса материальной точки. Пусть положение некоторойматериальной тоски относительно точки О, принятой за начало координат, характеризуется радиусом-векторомr. Моментом импусльса материальной точки относительно О называется вектор

      1. L=rp.

Моментом импульса системы материальных точек относительно тоски О , принятой за начало, называется сумма моментов импульса, материальных точек, составляющих систему.

Закон сохранения момента импульса. Этот закон справедлив лишь для изолированных систем. Для них момент внешних силМравен нулю и уравнение моментов принимает вид

dL/dt=0

Интегрируя это уравнение получаем

L=const,

Lx=const, Ly=const, Lz=const

Это равенство выразает закон сохранения момента импульса:

момент импусльса изолированной системы не изменяется при любых процессах, происходящих внутри системы.

Может случится, что система не является полностью изолированной, но на некоторое направление, например на осьz, проекция момента сил равна нулю. Тогда уравнение моментов озапишится в проециях в следующем виде:

dLx/dt=M,dLy/dt=M,dLz/dt=0.Lz=const.

Поэтому закон сохранения момента импульса можно применять не только к полностью изолированным системам, но и к частичнро изолированным.

Связь закона сохранения момента импульса с изотропностью пространства. Под изотропностью пространстав понимается эквивалентность различных направлений в пространстве. Это означает, что если имеется некоторая изолированная физическая система, то развитие событий в ней зависитот того, как она ориентирована в пространстве. В применениии к изилированной системе материальных точек отсюда следует, что угловое перемещение системы наδφне изменит её внутреннего состояния и его внутренних движений. Поэтому полная работа внутренних сил при угловом перемещении должна быть равна нулю. При угловом перемещенииδφ материальная точка, характеризуемая радиусом векторомri , испытывает смещениеδri =δφ*ri. Равенство нулю полной работы внутренних сил при угловом перемещении системы наδφвыражается в виде

½*∑∑(δri∙Fji+δri∙Fij)=0. (1)

Следовательно можно написать:

δri∙Fji+δri∙Fij=(δφri)∙Fji+( δφri)∙Fij=δφ∙(riFji)+δφ(riFij)=δφ∙[(ri-rj)Fji], (2)

где во внимание известное из векторной алгебры правило о циклической перестановке сомножетелей в смешанном векторном произведении и третий закон Ньютона. Пожставляя (2) в (1), находим ½*∑ijδφ∙[(ri-rj)*Fji]=0. Поскольку угловое перемещение δφ произвольно,получаем равенство ∑ij(ri-rj)*Fji=0. Можно сказать, что полученное равенство следует из изотропности пространства. А это означает, что закон сохранения момента импульса изолированной системы материальных точек обусловлен фундаментальным свойством пространства в инерциальных система – его изотропностью.

Гироскоп– массивное аксиально-симметричное тело, вращающееся с большой угловой скоростью вокруг оси симметрии.

Если гироскоп раскручен вокруг оси симметрии, то L=Jw=const и направление оси симметрии остаётся неизменным.

Прецессия гироскопа.(к оси гир. приложена сила, линия действия которой не проходит через точку закрепления).

Ось гироскопа перемещается не в направлении сил, а перпендикулярно к ней.

Элементарная теория гир.(мгн. угловая скорость вращения и мом. импульса направлены вдоль оси симметрии, >>).

Мом. импульса: L=Jz(Jz– мом. ин. относительно оси симметрии)

Рассмотрим гир, у которого точка опоры S не совпадает с центром масс О.

Мом силы тяжести: M=mglsin, где- угол между вертикалью и осью симметрии.

dL=M*dt, при этом и ось и L прецессируют вокруг вертикали с угл скоростью .

dL=L sin  dt dL= xL dt M=xL

Для силы тяжести:

mgl sin=Jzw sin

угл скорость прецессии =mgl/ Jzw.

Если сообщить гироскопу толчок, изменяющий угол , то прецессия перестанет быть равномерной (часто говорят: регулярной), а будет сопровождаться мелкими колебаниями вершины гироскопа – нутациями. Вектор момента импульса L описывает неподвижный в пространстве конус прецессии, и при этом ось симметрии гороскопа движется вокруг вектора L по поверхности конуса нутации. Вершина конуса нутации, как и вершина конуса прецессии, находится в точке закрепления гироскопа, а ось конуса нутации совпадает по направлению с L и движется вместе с ним. Угловая скорость нутации определяется выражением

wнут=L/JsJzw/Js

где Jzи Js- моменты инерции гироскопа относительно его оси симметрии и относительно оси, проходящей через точку опоры и перпендикулярной оси симметрии,w- угловая скорость вращения вокруг оси симметрии.

Раскрутим гироскоп вокруг его оси симметрии до большой угловой скорости (момент импульса L) и станем поворачивать раму с укрепленным в ней гироскопом вокруг вертикальной оси с некоторой угловой скоростью . Момент импульса L получит при этом приращениеdL, которое должно быть обеспечено моментом сил М, приложенных к оси гироскопа. Момент М, в свою очередь, создан парой силF+F`, возникающих при вынужденном поаороте оси гироскопа и действующих на ось со стороны рамы. По третьему закону Ньютора ось действует на раму с силами Ф + Ф`. Эти силы называются гироскопическими, они создают гироскопический момент М` . Появление гироскопических сил называют гироскопическим эффектом. Именно эти гироскопические силы мы и чувствуем, пытаясь повернуть ось вращающегося колеса.

Гироскопический момент нетрудно рассчитать. Положим, согласно элементарной теории, что

L=Jw

Где J – момент инерции гироскопа относительно его оси симметрии, а w- угловая скорость собственного вращения. Тогда момент внешних сил, действующих на ось, будет равен

M=xL=x(Jw)

Где – угловая скорость вынужденного поворота ( иногда говорят: вынужденной прецессии).Со стороны оси на подшипники действует противоположный момент

M`=-M= (Jw)x

Направление гироскопических сил можно найти легко найти с помощью правилa, сформулированного Н.Е.Жуковским гироскопические силы стремятся совместить момент импульсаLгироскопа с направлением угловой скорости вынужденного поворота.

Закон сохранения момента импульса:

Момент импульса сист.мат. точек сохраняется.если эта система явл. замкнутой.

Момент импульса сист. мат. точек относительно геометрической точки сохраняется, если сумма моментов внешних силд относительно той же точки равна нулю.

Соседние файлы в папке билеты и ответы