
- •Раздел ш. Циклические соединения Классификация циклических соединений
- •Алициклические соединения
- •Классификация алициклических соединений
- •Циклоалканы (циклопарафины)
- •Номенклатура циклоалканов
- •Изомерия циклоалканов
- •Структурная изомерия
- •Пространственная изомерия
- •Способы получения циклоалканов
- •Специальные методы получения
- •Строение циклопропана
- •Строение циклобутана и циклопентана
- •Конформации циклогексана
- •Химические свойства циклоалканов
- •Строение циклопропана
- •Строение циклобутана и циклопентана
- •Конформации циклогексана
- •Циклоалканы (циклопарафины)
- •Изомерия
- •Цис-транс-изомерия в циклических соединениях
- •Циклобутан, циклопентан и их конформации
- •Циклогексан и его конформации
- •Получение
- •Физические свойства
- •Химические свойства
- •Применение
- •Циклоалканы
- •Получение. Свойства
- •Ароматические соединения
- •2. Развитие представлений о строении бензола. Формула Кекуле.
- •3. Современные электронные и квантово-химические представления о
- •Квантово-химические представления о строении бензола.
Строение циклопропана
В молекуле циклопропана все атомы углерода расположены в одной плоскости.
При таком расположении атомов углерода в цикле валентные углы должны быть равны 600, а величина их отклонения от нормального валентного угла (109028 ) должна составлять: α = (109028 – 600) : 2 = 24044 . Это наиболее напряженная циклическая система.
Однако в действительности, валентные углы между атомами углерода в циклопропановом цикле составляет 1060. Это объясняется тем, что σ-связи между атомами углерода в циклопропане отличаются от обычных σ-связей, образующихся при перекрыванииsp3-гибридных орбиталей в алканах.
При образовании углерод-углеродных связей в циклопропановом цикле происходит только частичное перекрывание sp3-гибридных орбиталей, направленное не вдоль прямой, соединяющей центры связанных углеродных атомов, а за пределами плоскости циклопропана, что приводит к образованию изогнутых орбиталей или так называемыхбанановых илиτ- (греч.«тау») связей.
Образование банановых (или τ-) связей в циклопропане приводит к уменьшению углового напряжения в цикле, так как угол между осями двух электронных облаков увеличивается от 600до 1060, а сами τ-связи приобретают частично ненасыщенный характер и по прочности они занимают промежуточное положение между σ- и π-связями.
Этим объясняется склонность циклопропана к реакциям присоединения. О частичном ненасыщенном характере атомов углерода в молекуле циклопропана свидетельствует также повышенная протонная подвижность атомов водорода.
Строение циклобутана и циклопентана
В циклобутане и особенно в циклопентане угловое (ангулярное) напряжение, связанное с отклонением валентных углов атомов углерода от нормального валентного (109028), значительно ниже.
При расположении всех атомов углерода четырех- и пятичленных циклов в одной плоскости отклонение валентных углов составляет соответственно:
- для циклобутана - (109028 - 900) : 2 = 9044
- для циклопентана - (109028 - 1080) : 2 = 0044
Однако, в действительности, молекулы циклобутана и циклопентана не являются плоскими, так как в плоских структурах все атомы водорода находятся в заслоненном состоянии, что приводит к появлению торсионного напряжения и уменьшению стабильности молекул.
Для снижения торсионного напряжения молекулы циклобутана и циклопентана принимают неплоские конформации, в которых благодаря силам отталкивания между атомами водорода один из атомов углерода в циклобутане или два атома углерода в циклопентане непрерывно выходят из плоскости циклов.
Поэтому кольца циклобутана и циклопентана как бы находятся в постоянном волнообразном движении, при котором происходит быстрое превращение одной конформации в другую:
- для циклобутана:
- для циклопентана:
В конформации «кресло» 6 атомов водорода перпендикулярны усредненной плоскости кольца и называются аксиальными (a-), а 6 других находятся близко к этой условной плоскости и называются экваториальными (e-). Если заместить один из водородов на алкильную или какую-нибудь функциональную группу, она может находиться в экваториальном или аксиальном положении. При комнатной температуре существует единственный циклогексан, а не два изомера. Причина этого – быстрая инверсия цикла, в результате которой метильная группа из аксиальной становится экваториальной.
Рис. 16.3. Инверсия метилциклогексана
Циклопентан по Байеру практически не имеет углового напряжения. Однако даже он существует не в планарной форме, т.к. в плоской молекуле все атомы водорода будут находиться в заслоненной конформации, что приведет к заметному торсионному напряжению. Энергетически более выгодно существование циклопентана в виде так называемого «конверта», в котором 4 атома углерода находятся в одной плоскости, а пятый выходит из нее.
Рис. 16.4. Конформационные изменения циклопентана
Циклобутан также неплоский, он представляет собой два равносторонних треугольника, соединенных по одной из сторон и располагающихся в разных плоскостях. Причина выхода двух атомов углерода из плоскости все в той же заслоненной конформации метиленовых групп, которая энергетически невыгодна.
Рис. 16.5. Конформационные изменения циклобутана
В циклопропане атомы углерода не могут находиться в разных плоскостях (геометрическое место трех точек – плоскость). Молекулу можно представить как правильный треугольник. Однако экспериментальные данные показывают, что циклопропан ведет себя так, как если бы угол между С-С связями составлял 102о. Невозможно представить себе правильный треугольник с внутренними углами не равными 60о.
Перекрывание атомных гибридизованных орбиталей в молекуле циклопропана показано на рис. 16.6. Как видно, связь образуется не по линии, связывающей центры атомов. Такие связи называют «банановыми» или изогнутыми. По своим характеристикам они занимают промежуточное положение между s- и p-связями. Этот факт объясняет частичную ненасыщенность циклопропана.
Рис. 16.6. Перекрывание атомных орбиталей в молекуле циклопропана
В результате в молекулах циклобутана и циклопентана уменьшается «заслоненность» атомов водородов у соседних углеродных атомов, что приводит к снижению торсионного напряжения, за счет появления небольшого углового (ангулярного) напряжения.