
- •1. Введение в курс
- •1.1. Введение в базы данных, содержание и цели курса, основные понятия
- •1.1.1. О чём этот курс
- •1.1.2. Основные определения
- •1.1.3. Способы организации знаний в базах знаний
- •1.1.4. Применение баз знаний
- •1.1.5. Виды моделей баз данных
- •2. Теория баз данных
- •2.1. История развития представлений о базах данных
- •2.1.1. Области применения вычислительной техники
- •2.1.2. Базы данных и информационные системы
- •2.1.3. История развития баз данных
- •2.1.4. Этапы развития баз данных
- •2.2. Основные термины и определения теории бд, виды бд и их отличия
- •2.2.1. Классификация бд
- •2.3. Реляционные бд, понятие сущности и связи
- •2.3.1. Общие определения
- •2.3.2. Факты о реляционной модели данных
- •2.3.3. Достоинства реляционной модели данных
- •2.3.4. Недостатки реляционной модели данных
- •2.3.5. Целостность бд
- •2.3.6. Отношения
- •2.3.7. Кортежи и отношения
- •2.3.8. Связи
- •2.3.9. Ключи отношений
- •2.3.10. Ссылочная целостность
- •2.3.11. Консистентность данных
- •2.4. Многоуровневая архитектура баз данных, понятие физического и логического уровней баз данных
- •2.4.1. Определения
- •2.4.2. Многоуровневая структура баз данных
- •2.4.3. Постоянная и переменная длина записи
- •2.4.4. Способы представления данных
- •2.4.5. Простейший вариант – плоский файл
- •2.4.6. Факторизация по значениям поля
- •2.4.7. Индексирование по полям
- •2.4.8. Комбинация простых представлений
- •2.4.9. Использование цепочек указателей
- •2.4.10. Многосписочные структуры
- •2.4.11. Инвертированная организация
- •2.4.12. Иерархическая организация
- •2.4.14. Промежуточный итог
- •2.4.15. Методы индексирования
- •2.4.16. Индексирование по комбинации полей
- •2.4.17. Селективный индекс
- •2.4.18. Индексация по методу сжатия
- •2.4.19. Фронтальное сжатие
- •2.4.20. Сжатие окончания
- •2.4.21. Символьные указатели
- •2.4.23. Индексно-последовательная организация
- •2.4.24. Сбалансированные деревья
- •2.4.25. Ведение файла
- •2.4.26. Хэширование
- •2.4.28. Итог
- •2.5. Алгоритмы хэширования
- •2.5.1. Введение
- •2.5.2. Хэширование
- •2.5.2. Факторы эффективности хэширования
- •2.5.3. Размер участка памяти
- •2.5.4. Плотность заполнения
- •2.5.5. Алгоритмы хэширования
- •2.5.6. Размещение записей в области переполнения
- •2.5.7. Итог
- •2.6. Механизмы обработки и хранения данных в бд
- •2.6.1. Введение
- •2.6.2. Механизмы обработки и хранения данных в ms-sql 6.0-6.5
- •2.6.3. Механизмы обработки и хранения данных в ms-sql 7.0 и более поздних версиях
- •2.6.4. Метод доступа isam
- •2.6.5. Метод доспута MyIsam
- •2.6.6. Метод доступа vsam
- •2.6.7. Включение записей в *sam-файлы
- •2.6.8. Размещение индексов для *sam-файлов
- •2.6.9. Метод доступа InnoDb
- •2.6.10. Итог
- •2.7. Физическое представление древовидных и сетевых структур
- •2.7.1. Введение
- •2.7.2. Древовидные структуры
- •2.7.3. Сетевые структуры
- •2.7.4. Итог
- •3.1.4. Стандарты разработки бд/субд
- •3.1.5. Sql и его стандарты
- •Часть 1 – sql/Структура (sql/Framework) – определяет общие требования соответствия и фундаментальные понятия sql.
- •3.1.6. Использование методологии idef1x
- •3.1.7. Пример логической и физической схемы в ErWin
- •3.1.8. Минимальный набор стандартных таблиц
- •3.1.8. Итог
- •3.2. Средства автоматизированного проектирования бд
- •3.2.1. Введение
- •3.2.2. Case-технологии
- •3.2.3. Достоинства case-технологий
- •3.2.4. Промежуточные выводы и определения
- •3.2.5. Методологии структурного моделирования
- •3.2.6. Методология sadt (idef0)
- •3.2.7. Методологии информационного моделирования
- •3.2.8. Нотация Чена
- •3.2.9. Нотация Мартина
- •3.2.10. Нотация ide1x
- •3.2.11. Нотация Баркера
- •3.2.12. Язык информационного моделирования
- •3.2.13. Case-средства
- •3.2.14. Процесс создания модели бд в ErWin
- •3.2.15. Процесс создания модели бд в Sparx ea
- •3.2.16. Итог
- •3.3. Особенности проектирования бд на логическом и физическом уровнях
- •3.3.1. Введение
- •3.3.2. Модель бд
- •3.3.4. Банки данных
- •3.3.5. Модели данных
- •3.3.6. Этапы проектирования бд
- •3.3.7. Проектирование бд: внешний уровень
- •3.3.8. Проектирование бд: инфологический уровень
- •3.3.9. Проектирование бд: даталогический уровень
- •3.3.10. Уровни sql
- •3.3.11. Проектирование бд: физический уровень
- •3.3.12. Итог
- •3.4. Прямое и обратное проектирование бд
- •3.4.1. Введение
- •3.4.2. Понятие нормализации
- •3.4.3. Требования нормализации
- •3.4.4. Примеры аномалий
- •3.4.5. Нормальные формы
- •3.4.6. Зависимости
- •3.4.6. Первая нормальная форма
- •3.4.7. Вторая нормальная форма
- •3.4.8. Третья нормальная форма
- •3.4.9. Нормальная форма Бойса-Кодда
- •3.4.10. Четвёртая нормальная форма
- •3.4.11. Пятая нормальная форма
- •3.4.12. Доменно-ключевая нормальная форма
- •3.4.13. Ещё раз, кратко, все нормальные формы
- •3.4.14. Ещё раз, кратко, в ErWin
- •3.5.2. Показатели качества бд
- •3.5.3. Итог
3.3.8. Проектирование бд: инфологический уровень
Основными составными элементами инфологической модели являются сущности (информационные объекты), связи между ними и их атрибуты (свойства).
Сущность – любой различимый объект (объект, который мы можем отличить от другого), информацию о котором необходимо хранить в базе данных.
Сущностями могут быть люди, места, самолеты, рейсы, вкус, цвет и т.д.
Необходимо различать такие понятия, как «тип сущности» и «экземпляр сущности». Понятие «тип сущности» относится к набору однородных личностей, предметов, событий или идей, выступающих как целое.
Экземпляр сущности относится к конкретной вещи в наборе. Например, типом сущности может быть ГОРОД, а экземпляром – Минск, Москва, Киев и т.д.
Атрибут – поименованная характеристика сущности.
Его наименование должно быть уникальным для конкретного типа сущности, но может быть одинаковым для различного типа сущностей (например, ЦВЕТ может быть определён для многих сущностей: СОБАКА, АВТОМОБИЛЬ, ДЫМ и т.д.).
Атрибуты используются для определения того, какая информация должна быть собрана о сущности.
Примерами атрибутов для сущности АВТОМОБИЛЬ являются ТИП, МАРКА, НОМЕРНОЙ ЗНАК, ЦВЕТ и т.д.
Здесь также существует различие между типом и экземпляром. Тип атрибута ЦВЕТ имеет много экземпляров или значений: красный, синий, зелёный и т.д., однако, каждому экземпляру сущности присваивается только одно значение атрибута.
Абсолютное различие между типами сущностей и атрибутами отсутствует. Атрибут является таковым только в связи с типом сущности. В другом контексте атрибут может выступать как самостоятельная сущность. Например, для автомобильного завода цвет – это только атрибут продукта производства, а для лакокрасочной фабрики цвет – тип сущности.
Ключ – минимальный набор атрибутов, по значениям которых можно однозначно найти требуемый экземпляр сущности. Минимальность означает, что исключение из набора любого атрибута не позволяет идентифицировать сущность по оставшимся.
Связь – ассоциирование двух или более сущностей.
Если бы назначением базы данных было только хранение отдельных, не связанных между собой данных, то её структура могла бы быть очень простой.
Однако одно из основных требований к организации базы данных – это обеспечение возможности отыскания одних сущностей по значениям других, для чего необходимо установить между ними определённые связи.
А так как в реальных базах данных нередко содержатся сотни или даже тысячи сущностей, то теоретически между ними может быть установлено очень много связей.
Наличие такого множества связей и определяет сложность инфологических моделей.
Требования и подходы к инфологическому проектированию.
Целью инфологического проектирования является создание структурированной информационной модели ПО, для которой будет разрабатываться БД. При проектировании на инфологическом уровне создается информационно-логическая модель (ИЛМ), которая должна отвечать следующим требованиям:
обеспечение наиболее естественных для человека способов сбора и представления той информации, которую предполагается хранить в создаваемой базе данных;
корректность схемы БД;
простота и удобство использования на следующих этапах проектирования, то есть ИЛМ может легко отображаться на модели БД, которые поддерживаются известными СУБД (сетевые, иерархические, реляционные и др.);
ИЛМ должна быть описана языком, понятным проектировщикам БД, программистам, администратору и будущим пользователям.
Суть инфологического моделирования, таким образом, состоит в выделении сущностей, которые подлежат хранению в БД, а также в определении атрибутов объектов и взаимосвязей между ними.
Существует два подхода к инфологическому проектированию: анализ объектов и синтез атрибутов.
Подход, который базируется на анализе объектов, называется нисходящим, а на синтезе атрибутов – восходящим.