

Ответы
к вариантам самостоятельной работы «Линейная алгебра»
Вариант 1
1. |
(1,2,3) . 2. r = 2 . |
|
|
|
|
|
|
|
|
3. |
C (19,7,8,0,0)T + C |
2 |
(3,−25,0,8,0)T |
+ C |
3 |
(1,−1,0,0,−2)T . |
|||
|
1 |
|
|
|
1 |
0 |
0 |
||
|
|
|
|
|
|
|
|||
4. (−11 37,12 37,33 37, −11 37). |
5. A = |
0 |
1 2 |
1 2 . |
|||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 2 |
|
|
|
|
|
|
|
|
0 |
1 2 |
6.x1 =157621 (−195x1′′ −1116x2′′ −18x3′′), x2 =157621 (−507x1′′ +180x2′′ + 208x3′′),
|
x3 |
= |
|
1 |
|
(−13x1′′ −1008x2′′ |
− 256x3′′). |
|
|
|
||
|
15762 |
|
|
|
||||||||
|
|
|
|
|
|
|
|
|
|
|||
|
1 |
68 −11 31 |
|
1 0 |
0 |
|
||||||
7. |
|
|
|
16 |
|
8. Λ = |
|
− 2 |
|
в базисе собственных |
||
7 |
15 |
9 . |
0 |
0 |
||||||||
|
|
|
|
133 |
|
|
|
0 |
|
|
||
|
|
−56 |
21 |
|
0 |
3 |
|
векторов x1 = (−1,1,1)T , |
x 2 = (11,1,−14)T , x3 = (1,1,1)T матрицы А. |
|||||
9. |
x 2 (59 )− y2 (516)=1. |
|
|
|||
|
|
|
|
|
|
Вариант 2 |
1. |
(1,−1,1) . |
2. r = 2 . |
|
|
||
3. |
C (15,−12,−7,44,0)T + C |
2 |
(−7,−12,15,0,44)T . |
|||
|
1 |
|
|
|
|
|
4. (− 5,−7, 0, 0)T + C(5,7,1,0)T . |
||||||
|
|
1 4 |
3 4 |
0 |
|
|
5. |
|
3 4 |
0 |
|
|
|
A = |
0 . |
|
|
|||
|
|
0 |
0 |
1 |
|
|
|
|
|
|
|
|
|
6.x1 = 45181 (43x1′′ −89x2′′ −85x3′′),
x2 = 45181 (−156x1′′ + 433x2′′ −533x3′′), x3 = 45181 (84x1′′ − 216x2′′ −154x3′′).
142

|
|
2 |
9 |
8 |
|
6 |
0 |
0 |
|
7. |
|
−1 |
−10 |
|
8. Λ = |
|
− 2 |
|
в базисе нормирован- |
|
−9 . |
0 |
0 |
||||||
|
|
|
−3 |
|
|
|
|
|
|
|
−3 |
−5 |
|
0 0 |
3 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
x |
1 |
|
1 |
|
2 |
|
|
1 |
|
T |
, x |
2 |
|
|
|
1 |
|
|
1 T |
||||
ных собственных векторов |
|
= |
|
, |
|
, |
|
|
|
|
|
|
|
= |
|
|
|
|
,0,− |
|
, |
||||||||||||||||
|
|
|
|
6 |
|
|
|
|
|
|
2 |
|
|||||||||||||||||||||||||
|
|
|
|
|
|
|
|
|
|
1 T |
|
|
|
|
|
6 6 |
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
|||||||
x |
3 |
|
1 |
|
,− |
1 |
|
, |
|
|
|
|
|
|
9. |
x |
2 |
(1 |
|
|
)− y |
2 |
(1 |
|
|
) |
|
|
|
|
|||||||
|
= |
|
|
|
|
|
|
|
матрицы А. |
|
|
4 |
|
6 |
= −1 – мнимый эл- |
||||||||||||||||||||||
|
|
3 |
3 |
|
|
|
|
|
|||||||||||||||||||||||||||||
|
|
|
|
|
|
3 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||||||
липс. |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Вариант 3 |
|
|
|
|
|
|
|
|
|
|
|
|
||||||||
|
|
1. |
|
(2,1,−2) . 2. |
r = 2 . |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||||
|
|
3. |
C (3,7,−1,0,0)T + C |
2 |
(1,−7,0,6,0)T |
+ C |
3 |
(−1,7,0,0,6)T |
|
|
|
|
|||||||||||||||||||||||||
|
|
|
|
|
1 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||
|
|
4. (− 2 11,10 11,0,0)T + C (1,−5,11,0)T + C |
2 |
(−9,1,0,11)T . |
|
|
|||||||||||||||||||||||||||||||
|
|
|
|
|
|
|
1 2 |
1 2 |
0 |
|
|
1 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||
|
|
5. A = |
1 2 3 2 0 . |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
0 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||
|
|
|
|
|
|
|
0 |
|
1 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6.x1 = −5881 (− 71x1′′ −37x2′′ + 39x3′′), x2 = −5881 (258x1′′ +126x2′′ +162x3′′),
|
x3 = − |
1 |
(98x1′′ + 46x2′′ |
+ 42x3′′). |
|
|
|
|
||
|
588 |
|
|
|
|
|||||
|
|
|
|
|
|
|
|
|
|
|
|
1 |
2 |
−1 3 |
|
3 0 0 |
|
||||
7. |
|
2 |
|
8. Λ = |
|
1 |
|
в базисе собственных |
||
5 |
−9 |
25 . |
0 |
0 |
||||||
|
|
|
0 |
|
|
|
1 |
|
|
|
|
|
0 |
15 |
|
0 |
0 |
|
векторов x1 = (1,1,0)T , |
x 2 = (−1,1,0)T , |
x3 = (−1,0,1)T матрицы А. |
|||||
9. |
y2 = −0,8x . |
|
|
|
|
|
|
|
|
|
|
Вариант 4 |
|||
1. |
(1 3, −1 3,2 3). 2. r = 4 . |
|
|
|
|||
3. |
C (−7,0,2,0,0)T |
+ C |
2 |
(1,0,0,2,0)T |
+ C |
3 |
(2,0,0,0,1)T . |
|
1 |
|
|
|
|
4. (13 / 3, 0, − 7, 0)T + C(1,3,0,0)T .
143

|
1 |
0 |
0 |
|
5. A = |
|
|
|
|
0 1 2 |
−1 2 . |
|||
|
|
−1 2 |
1 2 |
|
|
0 |
|
6.x1 = −7561 (11x1′′ + 61x2′′ + 74x3′′), x2 = −7561 (126x1′′ −18x2′′ −36x3′′),
|
x3 = − |
1 |
(− 70x1′′ − 74x2′′ + 20x3′′). |
|
|
|
|
|||||
|
|
|
|
|
|
|||||||
|
|
756 |
|
|
|
|
|
|
|
|
|
|
|
58 |
48 |
59 |
|
|
|
1 |
0 |
0 |
|
||
7. |
24 |
74 |
43 . |
|
|
8. |
Λ = 0 |
2 |
0 |
в базисе собственных векто- |
||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
27 |
|
|
|
|
|
0 |
|
|
|
|
|
9 |
17 |
|
|
|
0 |
3 |
|
||||
ров x1 = (1,1,1)T , |
x 2 = (1,0,1)T , |
x3 = (1,1,0)T матрицы А. |
||||||||||
9. |
y2 (1693 )− x 2 (1699 )=1. |
|
|
|
|
|
||||||
|
|
|
|
|
|
|
|
Вариант 5 |
|
|
||
1. |
(2,−3,4) . |
2. r =3 . |
|
|
|
|
|
|
|
|||
3. |
C (−17,8,21,0,0)T + C |
2 |
(4,1,0,7,0)T + C |
3 |
(−3,1,0,0,7)T . |
|||||||
|
1 |
|
|
|
|
|
|
|
|
|
||
4. (− 6 7,1 7,15 7,0)T + C(8,−13,−6,7)T . |
|
|
|
|||||||||
|
|
1 2 |
−1 2 |
0 |
|
|
|
|
|
|
|
|
5. |
|
|
|
|
|
|
|
|
|
|
|
|
A = −1 2 1 2 0 . |
|
|
|
|
|
|
|
|||||
|
|
0 |
0 |
|
|
|
|
|
|
|
|
|
|
|
1 |
|
|
|
|
|
|
|
6.x1 = −6301 (39x1′′ − 77x2′′ − 25x3′′),
x2 = −6301 (−132x1′′ −196x2′′ +1258x3′′),
|
x3 = − |
1 |
(− 60x1′′ + 70x2′′ |
−10x3′′). |
|
|
|
|
|
||
|
630 |
|
|
|
|
|
|||||
|
|
|
|
|
|
|
|
|
|
|
|
|
−1 − 2 − 7 |
|
−9 0 |
0 |
|
||||||
7. |
|
2 |
3 |
1 |
|
8. Λ = |
|
0 |
9 |
|
в базисе |
|
. |
|
0 |
||||||||
|
|
0 |
0 |
5 |
|
|
|
0 |
0 |
|
|
|
|
|
|
|
9 |
|
нормированных собственных векторов
144

x1 = (2 3 , 13 , 2 3 )T , |
|
x 2 = (1 |
5 , −2 |
5 ,0)T , x3 = (0,−2 3 , 13 )T матрицы А. |
|||||||
9. x 2 |
(13136)− y2 |
(13181)=1. |
|
|
|||||||
|
|
|
|
|
|
|
|
|
Вариант 6 |
|
|
1. |
(1,−2,3) . |
2. r = 2 . |
|
|
|
|
|
||||
3. |
C (−3,9,11,0,0)T |
+ C |
2 |
(6,−7,0,11,0)T + C |
3 |
(7,12,0,0,11)T . |
|||||
|
1 |
|
|
|
|
|
|
|
|
||
4. (0,4,3,0)T + C(0,−2,−2,1)T . |
|
|
|
||||||||
|
|
1 |
0 |
|
0 |
|
|
|
|
|
|
5. |
A = |
|
|
|
|
|
|
|
|
|
|
0 1 2 1 2 |
. |
|
|
|
|
|
|||||
|
|
|
1 2 |
|
|
|
|
|
|
|
|
|
|
0 |
3 2 |
|
|
|
|
|
6.x1 = −601 (− 27x1′′ + 21x2′′ −33x3′′), x2 = −601 (16x1′′ −8x2′′ + 4x3′′),
|
x3 |
= − |
1 |
|
(25x1′′ −35x2′′ + 55x3′′). |
||||||||
|
60 |
||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
||
|
|
5 |
|
|
10 |
2 |
|
|
|
|
|||
7. |
|
20 |
|
|
40 |
9 |
|
|
|
8. Матрица к диагональному виду не при- |
|||
|
|
|
. |
|
|||||||||
|
|
|
|
− 77 |
|
|
|
|
|
||||
|
−38 |
−18 |
|
|
|
||||||||
водится. |
|
|
|
|
|
|
|
9. x 2 9 + y2 4 =1. |
|||||
|
|
|
|
|
|
|
|
|
|
|
|
|
Вариант 7 |
1. |
(1 2, −1 2,1 4). 2. r =3 . |
|
|||||||||||
3. |
C (8,5,−13,0,0)T + C |
2 |
(−10,23,0,13,0)T + C (0,−1,0,0,1)T . |
||||||||||
|
1 |
|
|
|
|
|
|
|
|
|
|
3 |
|
4. (1,0,−1,0)T . |
|
|
|
|
|
|
|||||||
|
|
1 2 |
|
0 |
|
1 2 |
|
|
|
|
|||
5. |
|
|
0 |
|
|
1 |
|
0 |
|
|
|
|
|
A = |
|
|
|
. |
|
|
|
||||||
|
|
|
|
|
|
0 |
|
|
|
|
|
|
|
|
|
1 2 |
|
|
−1 2 |
|
|
|
|||||
6. |
x1 |
= |
|
1 |
|
|
|
(702x1′′ − 2998x2′′ |
− 455x3′′), |
||||
14405 |
|
||||||||||||
|
|
|
|
|
|
|
|
|
|
145

|
x2 |
= |
|
|
|
1 |
|
(− 706x1′′ +1696x2′′ |
+192x3′′), |
|
|
||||||
|
14405 |
|
|
||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||
|
x3 |
= |
|
|
|
1 |
|
(− 656x1′′ +1454x2′′ |
+832x3′′). |
|
|
||||||
|
14405 |
|
|
|
|||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||
|
− 2 12 |
3 |
|
|
|
|
|
1 0 0 |
|
||||||||
7. |
|
|
|
|
|
11 − |
7 |
|
|
|
|
|
|
|
в базисе собственных |
||
−14 |
. |
|
|
|
|
8. Λ = 0 2 |
0 |
||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
46 |
−82 −17 |
|
|
|
|
0 0 3 |
|
|||||||||
векторов x1 = (− 2,1,2)T , |
|
x 2 = (−8,3,7)T , x3 = (−3,1,3)T матрицы А. |
|||||||||||||||
9. x 2 1 − y2 9 =1. |
|
|
|
|
|
|
|
|
|
||||||||
|
|
|
|
|
|
|
|
|
|
|
|
Вариант 8 |
|
|
|||
1. |
(1 3,−1,6). |
|
2. r = 2 . |
|
|
|
|
|
|||||||||
3. |
C (23,−8,−19,3,0)T + C |
2 |
(40,−16,−17,0,9)T . |
|
|
||||||||||||
|
1 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4. (0,4,3,0)T + C (1,2,0,0)T |
+ C |
2 |
(0,−2,−2,1)T . |
|
|
||||||||||||
|
|
|
|
|
|
|
|
1 |
|
|
|
|
|
|
|
|
|
|
|
1 |
0 |
|
0 |
|
|
|
|
|
|
||||||
5. A = |
|
|
|
|
1 4 |
|
|
|
|
|
|
|
|
||||
0 |
− 3 4 . |
|
|
|
|
|
|||||||||||
|
|
|
|
|
|
− |
3 4 |
|
3 4 |
|
|
|
|
|
|
||
|
|
0 |
|
|
|
|
|
|
|
6.x1 = 41881 (280x1′′ − 696x2′′ −133x3′′), x2 = 41881 (−168x1′′ + 676x2′′ − 232x3′′),
|
x3 |
= |
1 |
|
(− 49x1′′ +133x2′′ |
−119x3′′). |
|
|
|
|
|
|||||
|
4188 |
|
|
|
|
|
||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||
|
|
0 |
|
0 |
0 |
|
|
|
|
|
1 |
0 |
0 |
|
||
7. |
|
|
|
23 |
5 |
|
|
|
8. |
Λ = |
|
1 |
|
в базисе собственных |
||
−14 |
. |
|
|
0 |
0 |
|||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
46 −82 −18 |
|
|
|
|
0 0 |
2 |
|
|||||||
векторов x1 = (1,0,0)T , |
|
x 2 = (0,1,0)T , |
x3 = (1,0,1)T матрицы А. |
|||||||||||||
9. |
y2 = (6 5 5)x . |
|
|
|
|
|
|
|
|
|
|
|
||||
|
|
|
|
|
|
|
|
|
|
Вариант 9 |
|
|
|
|
||
1. |
(1,−1,2). |
|
2. r =3 . |
|
|
|
|
|
|
|
|
|
||||
3. |
C (−14,5,11,0,0)T |
+ C |
2 |
(4,−3,0,11,0)T + C |
3 |
(3,−5,0,0,11)T . |
||||||||||
|
1 |
|
|
|
|
|
|
|
|
|
|
|
|
|
4. (−1,−3,0,0)T + C(1,1,1,0)T .
146

|
|
1 2 |
0 |
−1 2 |
|
5. A = |
|
0 |
1 |
0 |
|
|
. |
||||
|
|
|
0 |
1 2 |
|
|
−1 2 |
|
6.x1 = 27531 (1192x1′′ + 553x2′′ − 699x3′′), x2 = 27531 (−1408x1′′ − 478x2′′ + 798x3′′),
|
x3 = |
|
1 |
|
(− 660x1′′ − 437x2′′ |
+ 417x3′′). |
|
|
|
|
|
|
|
|
|
|
||||||||||
|
2753 |
|
|
|
|
|
|
|
|
|
|
|||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||
|
− 7 −3 2 −5 2 |
|
|
|
|
|
|
|
0 0 0 |
|
|
|
|
|
||||||||||||
7. |
|
7 |
|
3 2 |
|
|
|
|
|
|
|
|
|
|
|
1 |
|
|
в базисе нормированных |
|||||||
|
|
|
5 2 . |
|
|
|
|
8. Λ = 0 |
0 |
|||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
− 4 1 2 −3 2 |
|
|
|
|
|
|
|
0 0 3 |
|
|
|
)T |
|
||||||||||||
собственных векторов x1 = (1 |
3 |
, |
1 |
3 |
, 1 |
3 |
)T |
, |
x 2 = (1 |
,0, −1 |
2 |
, |
||||||||||||||
x3 = (1 |
|
|
|
|
|
|
)T |
|
|
|
|
|
|
|
|
|
|
|
2 |
(1 ) |
|
|
||||
6 |
, −2 |
1 |
матрицы А. |
|
|
9. |
x 2 |
|
(1 |
4 |
)+ y2 |
=1. |
|
|||||||||||||
|
|
|
6 |
|
6 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
|
|
|
||
|
|
|
|
|
|
|
|
|
|
|
Вариант 10 |
|
|
|
|
|
|
|
|
|
||||||
1. (3,1,2). |
|
2. r = 2 . |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||
3. |
C (−1,19,27,0,0)T + C |
2 |
(2,11,0,27,0)T + C |
3 |
(−1,−10,0,0,9)T . |
|
|
|||||||||||||||||||
|
1 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||
4. (−9,7,0,0)T + C(8,−6,1,0)T . |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||||||||
|
|
1 |
|
|
0 |
|
0 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 4 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5. A = 0 |
|
|
− 3 4 . |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||||
|
|
|
|
− |
|
3 4 |
1 4 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||
|
|
0 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6.x1 = −411 (45x1′′ −90x2′′ − 65x3′′), x2 = −411 (− 3x1′′ − x2′′ + 2x3′′),
x3 = −411 (− 23x1′′ − 39x2′′ + 27x3′′).
147

|
1 |
1 −1 0 |
|
− 2 0 |
0 |
|
|||||
7. |
|
8 |
|
|
8. Λ = |
|
0 |
4 |
|
в базисе |
|
3 |
23 |
12 . |
|
0 |
|||||||
|
|
|
8 |
9 |
|
|
|
0 |
0 |
|
|
|
|
25 |
|
|
|
4 |
|
нормированных собственных векторов x1 = (1 |
6 |
, 1 |
6 |
, −2 |
6 |
)T |
, |
|||||
x 2 = (−1 |
|
2 , 0)T , x3 = (2 |
|
|
12 )T |
|
|
|
|
|||
2 , 1 |
12 , 2 |
12 , 2 |
матрицы А. |
|
|
|
||||||
9. x 2 8 + y2 32 =1. |
|
|
|
|
|
|
|
|
|
|
Вариант 11
1. |
(2,−1,3). 2. r =3 . |
|
|
|
|
|
|||||||
3. |
C (−1,3,8,0,0)T + C |
2 |
(3,−17,0,4,0)T + C |
3 |
(−1,3,0,0,8)T . |
||||||||
|
1 |
|
|
|
|
|
|
|
|
|
|
||
4. |
(0, −17 |
14 |
, −22 |
14 |
,0)T |
+ C (2,1,0,0)T + (0,1,5,−7)T . |
|||||||
|
|
|
|
|
|
|
1 |
|
|
|
|||
|
|
|
1 4 |
0 |
− |
|
|
3 4 |
|
|
|||
5. |
|
|
0 |
1 |
|
|
0 |
|
|
|
|||
A = |
|
|
|
. |
|
|
|||||||
|
− |
|
3 4 |
0 |
|
3 4 |
|
|
|
||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6.x1 = 841 (2x1′′ + 2x2′′ −10x3′′), x2 = 841 (20x1′′ −11x2′′ −13x3′′),
|
x3 |
= |
1 |
(− 4x1′′ − 23x2′′ −11x3′′). |
|||
|
84 |
||||||
|
|
5 |
4 |
2 |
|
|
|
|
|
|
|||||
7. |
|
|
|
−5 |
|
|
8. Матрица не приводится к диагонально- |
− 4 |
− 4 . |
||||||
|
|
0 |
|
0 |
3 |
|
|
|
|
|
|
|
|||
му виду. |
|
|
9. |
x 2 + y2 |
(0,5) =1. |
Вариант 12
1. (1,2,3) . 2. r =3 .
3. C1(2,1,0,0,0)T + C2 (0,1,5,1,0)T + C3 (0,5,2,4,0,−2)T . 4. (−5,−7,0,0)T + C(5,7,1,0)T .
148

|
|
|
|
|
1 4 |
− |
3 4 0 |
|
|
|
|
|
|
|||||
5. |
|
|
|
|
|
|
|
|
|
3 4 |
|
|
|
|
|
|
|
|
A = − 3 4 |
0 . |
|
|
|
|
|
||||||||||||
|
|
|
|
|
|
0 |
|
0 |
1 |
|
|
|
|
|
|
|||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6. |
x1 |
= |
|
|
1 |
|
( |
|
x2′′ − x3′′), |
|
|
|
|
|
||||
27 |
|
|
|
|
|
|
|
|||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||
|
x2 = |
|
|
1 |
|
|
(− |
3x1′′ + 2x2′′ −8x3′′), |
|
|
|
|
|
|||||
|
|
|
27 |
|
|
|
|
|
||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||
|
x3 |
= |
|
|
1 |
|
|
(− 6x1′′ + x2′′ −10x3′′). |
|
|
|
|
|
|||||
|
27 |
|
|
|
|
|
|
|||||||||||
|
|
4 |
|
3 |
2 |
|
|
|
|
1 |
0 |
0 |
|
|
||||
|
|
|
|
|
|
|
|
|
|
|||||||||
7. |
|
|
|
|
|
− 2 |
|
|
|
|
8. |
|
1 |
0 |
|
в базисе собственных |
||
− 2 |
|
−1 . |
|
|
Λ = 0 |
|
||||||||||||
|
|
|
|
|
|
− 2 |
|
|
|
|
|
|
|
|
|
|
||
|
−3 |
|
− 2 |
|
|
|
0 0 |
− 2 |
|
|||||||||
векторов x1 = (1,3,0)T , |
x 2 = (0,−3,1)T , |
x3 = (1,−2,2)T матрицы А. |
||||||||||||||||
9. |
y2 2− x 2 4 =1. |
|
|
|
|
|
|
|
|
|||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
Вариант 13 |
|
|
|
|
|
1. |
(3,2,1) . |
|
|
2. r = 2 . |
|
|
|
|
|
|
|
|
||||||
3. |
C (12,19,−34,52,0)T + C |
2 |
(4,2,6,0,26)T . |
|
|
|
|
|||||||||||
|
1 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4. (2 3 , 16 ,0,0)T + C(0,−1,2,0)T . |
|
|
|
|
|
|||||||||||||
|
|
|
|
|
1 4 |
0 |
3 4 |
|
|
|
|
|
|
|
||||
5. |
|
|
|
|
0 |
|
|
1 |
0 |
|
|
|
|
|
|
|
|
|
A = |
|
|
|
|
. |
|
|
|
|
|
|
|
||||||
|
|
|
|
|
3 4 |
0 |
3 4 |
|
|
|
|
|
|
|
|
|||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6.Вектор x = (x1, x2 , x3 ) не может быть выражен через вектор
x′′= (x1′′, x2′′, x3′′) , так как матрица В второго преобразования вырождена.
|
1 |
− 20 |
− 20 |
− 40 |
|
|
||
7. |
|
5 |
28 |
34 |
|
8. Матрица не приводится к диаго- |
||
|
|
|
. |
|||||
10 |
||||||||
|
|
|
|
−35 |
−34 |
|
|
|
|
|
|
|
−104 |
|
|||
нальному виду. |
9. y2 |
4− x 2 9 =1. |
|
Вариант 14
1. (3,1,2) . 2. r =3 .
3. C1(3,−4,1,0,0)T + C2 (−2,1,0,1,0)T + C3 (−1,0,0,0,1)T .
149

4. |
(1, −1 |
2 |
,0,0)T + C (0,−3,2,0)T |
+ C |
2 |
(0,−2,0,1)T . |
|
|
|
||||||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
1 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||
|
|
|
3 4 |
|
|
0 |
3 4 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||||
5. |
|
|
|
|
0 |
|
|
|
1 |
0 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||
A = |
|
|
|
|
|
|
. |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||||
|
|
|
|
3 4 |
0 |
1 4 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6. |
x1 = − |
|
|
1 |
|
(3x1′′ −16x2′′ −12x3′′), |
|
|
|
|
|
|
|
|
|
|
|
||||||||||||
12 |
|
|
|
|
|
|
|
|
|
|
|
|
|||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||
|
x2 = − |
|
1 |
|
|
(−3x1′′ + 4x2′′ |
|
|
), |
|
|
|
|
|
|
|
|
|
|
||||||||||
|
12 |
|
|
|
|
|
|
|
|
|
|
|
|
||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||
|
x3 = − |
|
1 |
|
|
( |
|
4x2′′ |
|
|
|
). |
|
|
|
|
|
|
|
|
|
||||||||
|
12 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||
|
|
1 |
|
|
|
1 |
|
|
2 |
|
|
|
|
|
|
2 |
0 |
|
0 |
|
|
|
|
|
|||||
7. |
|
18 |
|
|
|
8 |
|
|
|
|
|
|
8. Λ = |
|
|
5 |
|
0 |
|
в ортонормированном базисе |
|||||||||
|
|
|
|
|
|
11 . |
|
|
|
0 |
|
|
|||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
− 7 2 3 |
|
|
|
|
|
|
0 0 |
|
−1 |
|
|
)T |
|
|||||||||||||||
собственных векторов x1 = (1,0,0)T , |
x 2 = (0, |
1 |
3 |
,− 2 |
3 |
, |
|||||||||||||||||||||||
x3 = (0, |
|
|
|
|
|
|
|
|
|
|
|
)T матрицы А. |
|
|
|
|
|
|
|
|
|
|
|
||||||
2 |
|
3 |
, 1 |
|
|
3 |
|
9. y2 = 0. |
|
|
|
|
|
|
|||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Вариант 15 |
|
|
|
|
|
|
||||||
1. |
(−14 , 14 , 12). |
2. r = 2 . |
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||||||||||
3. |
C (1,13,5,0,0)T |
+ C |
2 |
(0,−1,0,1,0)T + C |
3 |
(−1,7,0,0,5)T . |
|
||||||||||||||||||||||
|
1 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||
4. (1,0,0,0)T + C (1,1,3,0)T + C |
2 |
(1,0,2,1)T . |
|
|
|
|
|
|
|||||||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
1 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
|
|
|
|
|
|
|
0 |
|
|
0 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||
5. |
|
|
|
|
|
|
|
|
|
1 4 |
− |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||
A = 0 |
|
|
|
|
|
|
|
3 4 . |
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||||
|
|
|
|
|
|
|
− |
3 4 |
|
3 4 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||
|
|
0 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6.x1 = −501 (−3x1′′ −19x2′′ +8x3′′), x2 = −501 (− 2x1′′ + 4x2′′ −14x3′′), x3 = −501 (8x1′′ −16x2′′ + 6x3′′).
150

|
|
|
3 |
7 |
11 |
|
|
|
|
1 |
0 |
0 |
|
|
|
7. |
|
2 |
8 |
16 |
|
|
8. |
Λ = |
|
1 |
0 |
|
в базисе нормирован- |
|
|
. |
|
0 |
|
|||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
− 2 |
−8 −16 |
|
|
|
0 0 |
10 |
|
|||||
ных собственных векторов x1 = |
1 |
(2,−1,0)T , |
x 2 = |
1 |
(2,4,5)T , |
|||||||||
|
1 |
|
|
|
|
|
5 |
|
|
|
|
3 |
5 |
|
x3 = |
(1,2,−2)T |
матрицы А. |
|
9. |
x 2 (19 20) + y2 |
(19 50) =1. |
||||||||
|
3 |
|
|
|
|
|
|
|
|
|
|
|
|
|
151