- •Содержание
- •Введение Этапы решения технических задач на пк
- •Методы реализации математических моделей
- •1. Элементы теории погрешностей
- •1.1. Постановка задачи
- •1.2. Источники погрешностей
- •1.3. Приближенные числа и оценка их погрешностей
- •1.4. Правила записи приближенных чисел
- •1.5. Задачи теории погрешностей
- •1.6. Понятия устойчивости, корректности и сходимости
- •1.7. Некоторые обобщенные требования к выбору численных методов
- •2. Решение систем линейных алгебраических уравнений
- •2.1. Основные понятия и определения
- •2.2. Методы решения слау
- •2.2.1. Прямые методы решения слау
- •2.2.2. Итерационные методы решения слау
- •2.3. Вычисление определителей высоких порядков
- •2.4. Вычисление обратных матриц
- •2.5. Применение метода итераций для уточнения элементов обратной матрицы
- •3. Численное решение нелинейных уравнений
- •3.1. Постановка задачи
- •3.2. Отделение корней
- •3.2.1. Метод половинного деления
- •3.2.2. Графическое отделение корней
- •3.3. Итерационные методы уточнения корней
- •3.3.1. Метод простой итерации
- •3.3.2. Метод Ньютона (метод касательных)
- •3.3.3. Метод секущих
- •3.3.4. Метод деления отрезка пополам
- •3.3.5. Метод хорд
- •3.4. Общий алгоритм численных методов решения нелинейных уравнений
- •4. Решение систем нелинейных уравнений
- •4.1. Постановка задачи
- •4.2. Метод простой итерации
- •4.2.1. Условия сходимости метода простой итерации для нелинейных систем уравнений второго порядка
- •4.2.2. Общий случай построения итерирующих функций
- •4.3. Метод Ньютона для системы двух уравнений
- •4.4. Метод Ньютона для системn-го порядка сnнеизвестными
- •5. Аппроксимация функций
- •5.1. Постановка задачи
- •5.2. Интерполирование функций
- •5.3. Типовые виды локальной интерполяции
- •5.3.1. Линейная интерполяция
- •5.3.2. Квадратичная(параболическая)интерполяция
- •5.4. Типовые виды глобальной интерполяции
- •5.4.1. Интерполяция общего вида
- •5.4.2. Интерполяционный многочлен Лагранжа
- •5.4.3. Интерполяционный многочлен Ньютона
- •Локальная интерполяция. Рассмотрим два вида локальной интерполяции – линейную и квадратичную.
- •Глобальная интерполяция. Рассмотрим интерполяционные многочлены Лагранжа и Ньютона.
- •5.5. Сплайны
- •5.6. Сглаживание результатов экспериментов
- •5.7. Вычисление многочленов
- •6. Численное интегрирование
- •6.1. Постановка задачи
- •6.2. Простейшие квадратурные формулы
- •6.2.1. Формула прямоугольников
- •6.2.2. Формула трапеций
- •6.2.3. Формула Симпсона
- •6.3. Составные квадратурные формулы с постоянным шагом
- •6.3.1. Составная формула прямоугольников (средних)
- •6.3.2. Формула трапеций
- •6.3.3. Формула Симпсона
- •6.4. Выбор шага интегрирования для равномерной сетки
- •6.4.1. Выбор шага интегрирования по теоретическим оценкам погрешностей
- •6.4.2. Выбор шага интегрирования по эмпирическим схемам
- •6.5. Составные квадратурные формулы с переменным шагом
- •6.6. Квадратурные формулы наивысшей алгебраической точности (формула Гаусса)
- •7. Численное дифференцирование
- •7.1. Постановка задачи
- •7.2. Аппроксимация производных посредством локальной интерполяции
- •7.3. Погрешность численного дифференцирования
- •7.4. Аппроксимация производных посредством глобальной интерполяции
- •7.4.1. Аппроксимация посредством многочлена Ньютона
- •7.4.2. Вычисление производных на основании многочлена Лагранжа
- •7.5. Метод неопределенных коэффициентов
- •7.6. Улучшение аппроксимации при численном дифференцировании
- •8. Обыкновенные дифференциальные уравнения
- •8.1. Постановка задачи
- •8.2. Задача Коши для оду
- •8.3. Численные методы решения задачи Коши
- •8.3.1. Одношаговые методы решения задачи Коши
- •8.3.2. Многошаговые методы решения задачи Коши
- •Литература
- •220013, Минск, п. Бровки, 6
2. Решение систем линейных алгебраических уравнений
2.1. Основные понятия и определения
Системы линейных алгебраических уравнений (СЛАУ) являются важной математической моделью линейной алгебры. На их базе ставятся такие практические математические задачи, как:
1) непосредственное решение линейных систем;
2) вычисление определителей матриц;
3) вычисление элементов обратных матриц;
4) определение собственных значений и собственных векторов матриц.
Решение линейных систем является одной из самых распространенных задач вычислительной математики. К их решению сводятся многочисленные практические задачи нелинейного характера, решения дифференциальных уравнений и др.
Вторая и третья задачи являются также и составляющими технологии решения самих линейных систем.
Обычно СЛАУ n-го порядка записывается в виде
;
или в развернутой форме:
(2.1)
или в векторной форме:
, (2.2)
где
;
;
.
В
соотношении (2.2): Аосновная матрица системы сn2элементами;
=
(x1,x2,
...,xn)Т– вектор-столбец неизвестных;
= (b1,b2,
...,bn)Т– вектор-столбец свободных членов.
Определителем(детерминантом–det) матрицыА n-го порядка называется числоD(det A), равное
.
Здесь индексы ,, ...,«пробегают» все возможныеn! перестановок номеров 1, 2, ...,n;k– число инверсий в данной перестановке.
Первоначальным при решении СЛАУ (2.1)
является анализ вида исходной матрицы
Аи вектора-столбца свободных членов
в (2.2).
Если все свободные члены равны нулю, т.
е.
=
0, то система
называетсяоднородной. Если же
0 или хотя бы одноbi0 (
),
то система (2.2) называетсянеоднородной.
Квадратная матрица Аназываетсяневырожденной, илинеособенной, если ее определитель |A|0. При этом система (2.1) имеет единственное решение.
При |A| = 0 матрицаАназываетсявырожденной, илиособенной, а система (2.1) не имеет решения либо имеет бесконечное множество решений.
Если |A|0 система (2.1) называетсяплохо обусловленной, т. е. решение очень чувствительно к изменению коэффициентов системы.
В ряде случаев получаются системы уравнений с матрицами специальных видов: диагональные, трехдиагональные (частный случай ленточных), симметричные (аij=aji), единичные (частный случай диагональной), треугольные и др.
Решение системы (2.2) заключается в
отыскании вектора-столбца
=
(x1,x2,
... ,xn)Т,
который обращает каждое уравнение
системы в тождество.
Существует две величины, характеризующие степень отклонения полученного решения от точного, которые появляются в связи с округлением и ограниченностью разрядной сетки ПК, – погрешность иневязкаr:
(2.3)
где
– вектор решения.
Как правило, значения вектора
неизвестны.
Доказано, что если 0, то иr = 0. Обратное утверждение не всегда верно. Однако если система не плохо обусловлена, для оценки точности решения используют невязкуr.
2.2. Методы решения слау
Методы решения СЛАУ делятся на две группы:
– прямые (точные) методы;
– итерационные (приближенные) методы.
К прямымметодамотносятся такие методы, которые в предположении, что вычисления ведутся без округлений, позволяют получить точные значения неизвестных. Они просты, универсальны и используются для широкого класса систем. Однако они не применимы к системам больших порядков (n < 200) и к плохо обусловленным системам из-за возникновения больших погрешностей. К ним можно отнести:правило Крамера, методыобратных матриц,Гаусса,прогонки,квадратного корняи др.
К приближеннымотносятся методы, которые даже в предположении, что вычисления ведутся без округлений, позволяют получить решение системы лишь с заданной точностью. Это итерационные методы, т. е. методы последовательных приближений. К ним относятся методыпростой итерации,Зейделя.
