Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Заочники - 2013-2014 - Семестр 2 / 1 - Конспект лекций по численным методам.doc
Скачиваний:
103
Добавлен:
11.05.2015
Размер:
3.98 Mб
Скачать

Методы реализации математических моделей

Методы реализации математических моделей можно разделить на три группы:

1) графические;

2) аналитические;

3) численные.

Указанные методы используются как самостоятельно, так и совместно.

Графические методы позволяют оценивать порядок искомых величин и направление расчетных алгоритмов.

Аналитические методы (точные, приближенные) упрощают фрагментарные расчеты и позволяют успешно решать задачи оценки корректности и точности численных решений.

Основным инструментом реализации математических моделей являются численные методы, позволяющие свести решение задачи к вычислению конечного числа арифметических действий над числами и получение этого решения в виде числовых значений. Решение, получаемое численными методами, обычно является приближенным, т. е. содержит некоторую погрешность.

1. Элементы теории погрешностей

1.1. Постановка задачи

При математическом моделировании важно обеспечить достоверность полученных решений. Но из практики известно, что лишь в редких случаях удается найти метод решения, приводящий к точному результату. Как правило, приближенные решения используются совместно с точными, поэтому наряду с выбором метода вычислений с точки зрения оптимальности алгоритма его реализации важной задачей является оценка степени точности получаемого решения. Ее принято оценивать некоторой численной величиной, называемой погрешностью.

При решении любой практической задачи следует всегда указывать требуемую точность результата. В связи с этим нужно уметь:

1) оценивать точность результата (прямая задача теории погрешностей), зная заданную точность исходных данных;

2) выбирать необходимую точность исходных данных (обратная задача теории погрешностей), зная требуемую точность результата.

1.2. Источники погрешностей

На рассмотренных во введении этапах математического моделирования имеют место следующие источники погрешностей:

1) погрешность математической модели;

2) погрешность исходных данных (неустранимая погрешность);

3) погрешность численного метода;

4) вычислительная погрешность.

Погрешность математической моделивозникает из-за стремления обеспечить сравнительную простоту ее технической реализации и доступности исследования. Нужно иметь в виду, что конкретная математическая модель (ММ), прекрасно работающая в одних условиях, может быть совершенно неприменима в других. С точки зрения потребителя важным является правильная оценка области применения ММ.

Погрешность численного метода(погрешность аппроксимации) связана, например, с заменой интеграла суммой, усечением рядов при вычислении функций, интерполированием табличных значений функциональных зависимостей и т. п. Как правило, погрешность численного метода регулируема и может быть уменьшена до любогоразумногозначения путем изменения некоторого параметра.

Вычислительная погрешностьвозникает из-за округления чисел, промежуточных и окончательных результатов счета. Она зависит от правил и необходимости округления, а также от алгоритмов численного решения.

Вспомним технологию округления чисел.

1. Если старший отбрасываемый разряд меньше пяти, то предшествующая ему цифра в числе не изменяется.

2. Если старший отбрасываемый разряд больше пяти, то предшествующая цифра в числе увеличивается на единицу.

3. Если старший отбрасываемый разряд равен пяти, то по общепринятому соглашению предшествующая ему четная цифра в числе не изменяется (например с= 3,965;с*3,96), а нечетная – увеличивается на единицу (напримерс= 3,915;с*3,92).

4. При округлении целого числа отброшенные знаки не следует заменять нулями, надо применять умножение на соответствующие степени десяти.

В основе процессов округления лежит поиск минимальной разности между значением си его округлениемс*.

Пример 1.1. Округлить числосна соответствующее количество знаков:

1) с= 1,9396712; 2)с= 245,351365;

с*= 1,939671;с*= 245,35136;

с*= 1,93967;с*= 245,3514;

с*= 1,9397;с*= 245,351;

с*= 1,940;с*= 245,35;

с*= 1,94;с*= 245,4;

с*= 1,9;с*= 245;

с*= 2;с*= 2,4102;

с*= 2102.

Пример 1.2. Для обоснования необходимости применения округлений в целях экономии памяти приведем следующий пример. Задано выражение

S= 25,711,42 – 3,217,46 + 0,937,75 – 4,312,69.

1. Вычислить Sточно:

S= 36,5082 – 23,9466 + 7,2075 – 11,5939 = 8,1752.

2. Вычислить Sи округлить его до двух знаков после запятой:

= 8,18.

3. Вычислить каждое произведение с двумя знаками после запятой и просуммировать:

= 36,51 – 23,95 + 7,21 – 11,59 = 8,18.