
- •2.2 Полупроводниковые диоды
- •2.2.1 Классификация и система обозначений полупроводниковых диодов.
- •2.2.2 Устройство полупроводниковых диодов.
- •2.2.3.1 Высокочастотные выпрямительные диоды
- •2.2.3.2 Арсенидгаливые выпрямительные диоды
- •2.2.3.2 Выпрямление переменного тока с помощью выпрямительных диодов.
- •2.2.4 Импульсные диоды
- •2.2.5 Стабилитроны
- •2.2.6 Стабисторы
- •2.2.7 Варикапы
- •2.2.8 Туннельные диоды
- •2.2.9 Полупроводниковые диоды для свч
2.2.6 Стабисторы
Это полупроводниковые диоды, предназначенные для работы в стабилизаторах напряжения, причем в отличие от стабилитронов у стабисторов используется не обратное напряжение, а прямое. Значение этого напряжения мало зависит от тока в некоторых его пределах. Как правило, стабисторы изготовляются из кремния и имеют напряжение стабилизации в среднем около 0,7 В. Ток стабисторов обычно может быть от 1 мА до нескольких десятков миллиампер. Для получения стабильного напряжения в единицы вольт соединяют последовательно несколько стабисторов. Особенность стабисторов – отрицательный температурный коэффициент напряжения, т. е. напряжение стабилизации с повышением температуры уменьшается. Поэтому стабисторы применяют также в качестве термокомпенсирующих элементов, соединяя их последовательно с обычными стабилитронами, имеющими положительный температурный коэффициент напряжения.
2.2.7 Варикапы
Эти плоскостные диоды, иначе называемые параметрическими, работают при обратном напряжении, от которого зависит барьерная емкость. Таким образом, варикапы представляют собой конденсаторы переменной емкости, управляемые не механически, а электрически, т. е. изменением обратного напряжения.
Варикапы применяются главным образом для настройки колебательных контуров, а также в некоторых специальных схемах, например в так называемых параметрических усилителях. На рисунке 2.33 показана простейшая схема включения варикапа в колебательный контур. Изменяя с помощью потенциометра R обратное напряжение на варикапе, можно изменять резонансную частоту контура. Добавочный резистор R1 с большим сопротивлением включен для того, чтобы добротность контура не снижалась заметно от шунтирующего влияния потенциометра R. Конденсатор Ср является разделительным. Без него варикап был бы для постоянного напряжения замкнут накоротко катушкой L.
Рисунок 2.33 – Схема включения варикапа в колебательный контур в качестве конденсатора переменной емкости
В качестве варикапов довольно успешно можно использовать кремниевые стабилитроны при напряжении ниже UСТ, когда обратный ток еще очень мал и, следовательно, обратное сопротивление очень велико.
2.2.8 Туннельные диоды
Предложенный в 1958 г. японским ученым Л. Ёсаки туннельный диод изготовляется из германия или арсенида галлия с высокой концентрацией примесей (1019 —1020 см-3), т.е. с очень малым удельным сопротивлением, в сотни или тысячи раз меньшим, чем в обычных диодах. Такие полупроводники с малым сопротивлением называют вырожденными. Электронно-дырочный переход в вырожденном полупроводнике получается в десятки раз тоньше (10-6 см), чем в обычных диодах, а потенциальный барьер примерно в два раза выше. В обычных полупроводниковых диодах высота потенциального барьера равна примерно половине ширины запрещенной зоны, а в туннельных диодах она несколько больше этой ширины. Вследствие малой толщины перехода напряженность поля в нем даже при отсутствии внешнего напряжения достигает 10б В/см.
В туннельном диоде, как и в обычном, происходит диффузионное перемещение носителей через электронно-дырочный переход и обратный их дрейф под действием поля. Но кроме этих процессов основную роль играет туннельный эффект. Он состоит в том, что согласно законам квантовой физики при достаточно малой высоте потенциального барьера возможно проникновение электронов через барьер без изменения их энергии. Такой туннельный переход электронов с энергией, меньшей высоты потенциального барьера (в электрон-вольтах), совершается в обоих направлениях, но только при условии, что по другую сторону барьера для туннелирующих электронов имеются свободные уровни энергии. Подобный эффект невозможен с точки зрения классической физики (в которой электрон рассматривается как частица материи с отрицательным зарядом), но оказывается вполне реальным в явлениях микромира, подчиняющихся законам квантовой механики, согласно которым электрон имеет двойственную природу: с одной стороны, он является частицей, а с другой стороны, он может проявлять себя как электромагнитная волна. Но электромагнитная волна может проходить через потенциальный барьер, т. е. через область электрического поля, не взаимодействуя с этим полем.
Процессы в туннельном диоде удобно рассматривать на энергетических диаграммах, показывающих уровни энергии валентной зоны и зоны проводимости в n- и р-областях. Вследствие возникновения контактной разности потенциалов в n-р-переходе границы всех зон в одной из областей сдвинуты относительно соответствующих зон другой области на высоту потенциального барьера, выраженную в электрон-вольтах.
На рисунке 2.34 с помощью энергетических диаграмм изображено возникновение туннельных токов в электронно-дырочном переходе туннельного диода. Для того чтобы не усложнять рассмотрение туннельного эффекта, диффузионный ток и ток проводимости на этом рисунке не показаны. Диаграмма на рисунке 8.10, а соответствует отсутствию внешнего напряжения. Высота потенциального барьера взята для примера 0,8 эВ, а ширина запрещенной зоны составляет 0,6 эВ. Горизонтальными линиями в зоне проводимости и в валентной зоне показаны энергетические уровни, полностью или частично занятые электронами. В валентной зоне и зоне проводимости изображены также не заштрихованные горизонтальными линиями участки, которые соответствуют уровням энергии, не занятым электронами. Как видно, в зоне проводимости полупроводника n-типа и в валентной зоне полупроводника р-типа имеются занятые электронами уровни, которым соответствуют одинаковые энергии. Поэтому возможен туннельный переход электронов из области n в область р (прямой туннельный ток iпр) и из области р в область n (обратный туннельный ток io6p). Эти два тока одинаковы по значению, и результирующий ток равен нулю.
На рисунке 2.34, б показана диаграмма при прямом напряжении 0,1 В, за счет которого потенциальный барьер понизился на 0,1 эВ и составляет 0,7 эВ. В этом случае туннельный переход электронов из области n в область р усиливается, так как в области р имеются в валентной зоне свободные уровни с такими же энергиями, как энергии уровней, занятых электронами в зоне проводимости области n. А переход электронов из валентной зоны области р в область n невозможен, так как уровни, занятые электронами в валентной зоне области р, соответствуют в области n энергетическим уровням запрещенной зоны. Обратный туннельный ток отсутствует, и результирующий ток достигает максимума. В промежуточных случаях, например когда uпр = 0,05 В, существует и прямой и обратный туннельный ток, но обратный ток меньше прямого. Результирующим будет прямой ток, но он меньше максимального, получающегося при uпр = 0,1 В.
Случай, показанный на рисунке 2.34, в, соответствует uпр = 0,2 В, когда высота потенциального барьера стала 0,6 эВ. При этом напряжении туннельный переход невозможен, так как уровням, занятым электронами в данной области, соответствуют в другой области энергетические уровни, находящиеся в запрещенной зоне. Туннельный ток равен нулю. Он отсутствует также и при большем прямом напряжении.
Следует помнить, что при возрастании прямого напряжения увеличивается прямой диффузионный ток диода. При рассмотренных значениях uпр < 0,2 В диффузионный ток гораздо меньше туннельного тока, а при uпр > 0,2 В диффузионный ток возрастает и достигает значений, характерных для прямого тока обычного диода.
На рисунке 2.34, г рассмотрен случай, когда обратное напряжение uобр = 0,2 В. Высота потенциального барьера стала 1 эВ, и значительно увеличилось число уровней, занятых электронами в валентной зоне р-области и соответствующих свободным уровням в зоне проводимости n-области. Поэтому резко возрастает обратный туннельный ток, который получается такого же порядка, как и ток при прямом напряжении.
Рисунок 2.34 – Энергетические диаграммы p-n-перехода в туннельном диоде при различном приложенном напряжении
Вольтамперная характеристика туннельного диода (рисунок 2.35) поясняет рассмотренные диаграммы. Как видно, при u = 0 ток равен нулю. Увеличение прямого напряжения до 0,1 В дает возрастание прямого туннельного тока до максимума (точка А). Дальнейшее увеличение прямого напряжения до 0,2 В сопровождается уменьшением туннельного тока. Поэтому в точке Б получается минимум тока и характеристика имеет падающий участок АБ, для которого характерно отрицательное сопротивление переменному току
Ri = u/i < 0. (2.9)
После этого участка ток снова возрастает за счет диффузионного прямого тока, характеристика которого на рисунке 2.35 показана штриховой линией. Обратный ток получается такой же, как прямой, т. е. во много раз больше, нежели у обычных диодов.
Рисунок 2.35 – Вольтамперная характеристика туннельного диода
Основные параметры туннельных диодов – ток максимума Iтах, ток минимума Imin (часто указывается отношение Imax/Imin, которое бывает равно нескольким единицам), напряжение максимума U1 напряжение минимума U2, наибольшее напряжение U3, соответствующее току Iтах на втором восходящем участке характеристики (участок БВ). Разность U = U3 – U1 называется напряжением переключения или напряжением скачка. Токи в современных туннельных диодах составляют единицы миллиампер, напряжения — десятые доли вольта. К параметрам также относится отрицательное дифференциальное сопротивление диода (обычно несколько десятков Ом), общая емкость диода (единицы или десятки пикофарад), время переключения (доли наносекунды) и максимальная, или критическая, частота (сотни гигагерц).
Включая туннельный диод в различные схемы, можно его отрицательным сопротивлением компенсировать положительное активное сопротивление (если рабочая точка будет находиться на участке АБ) и получать режим усиления или генерации колебаний. Например, в обычном колебательном контуре за счет потерь всегда имеется затухание. Но с помощью отрицательного сопротивления туннельного диода можно уничтожить потери в контуре и получить в нем незатухающие колебания. Простейшая схема генератора колебаний с туннельным диодом показана на рисунке 2.36.
Рисунок 2.36 – Простейшая схема включения туннельного диода для генерации колебаний
Работу такого генератора можно объяснить следующим образом. При включении питания в контуре LC возникают свободные колебания. Без туннельного диода они затухли бы. Пусть напряжение Е выбрано таким, чтобы диод работал на падающем участке характеристики, и пусть во время одного полупериода переменное напряжение контура имеет полярность, показанную на рисунке знаками « + » и «–» без кружков (знаки « + » и «–» в кружках относятся к постоянным напряжениям). Напряжение от контура подается на диод и является для него обратным. Поэтому прямое напряжение на диоде уменьшается. Но за счет работы диода на падающем участке характеристики ток возрастает, т. е. пройдет дополнительный импульс тока, который добавит энергию в контур. Если эта дополнительная энергия достаточна для компенсации потерь, то колебания в контуре станут незатухающими.
Туннельный переход электронов через потенциальный барьер происходит в чрезвычайно малые промежутки времени: 10-12-10-14с, или 10-3-10-5нс. Поэтому туннельные диоды хорошо работают на сверхвысоких частотах. Например, можно генерировать и усиливать колебания с частотой до десятков и даже сотен гигагерц. Следует заметить, что частотный предел работы туннельных диодов практически определяется не инерционностью туннельного эффекта, а емкостью самого диода, индуктивностью его выводов и его активным сопротивлением.
Принцип усиления с туннельным диодом показан на рисунке 2.37. Для получения режима усиления необходимо иметь строго определенные значения Е и Rн. Сопротивление RH должно быть немного меньше абсолютного значения отрицательного сопротивления диода. Тогда при отсутствии входного напряжения исходная рабочая точка Т может быть установлена на середине падающего участка (эта точка является пересечением линии нагрузки с характеристикой диода). При подаче входного напряжения с амплитудой Um вх линия нагрузки будет «совершать колебания», перемещаясь параллельно самой себе.
Рисунок 2.37 – Простейшая схема усилителя с туннельным диодом (а) и график, поясняющий процесс усиления (б)
Крайние ее положения показаны штриховыми линиями. Они определяют конечные точки рабочего участка АБ. Проектируя эти точки на ось напряжений, получаем амплитуду выходного напряжения Um вых, которая оказывается значительно больше амплитуды входного. Особенность усилителя на туннельном диоде – отсутствие отдельной входной и отдельной выходной цепи, что создает некоторые трудности при осуществлении схем с несколькими каскадами усиления. Усилители на туннельных диодах могут давать значительное усиление при невысоком уровне шумов и работают устойчиво.
Туннельный диод используется также в качестве быстродействующего переключателя, причем время переключения может быть около 10–9 с, т.е. около 1 не, и даже меньше. Схема работы туннельного диода в импульсном режиме в общем случае такая же, как на рисунке 2.37, но только входное напряжение представляет собой импульсы, а сопротивление RH должно быть несколько больше абсолютного значения отрицательного сопротивления диода. На рисунке 2.38 показана диаграмма работы туннельного диода в импульсном режиме. Напряжение питания Е выбрано таким, что при отсутствии входного импульса диод работает в точке А и ток получается максимальным (Imах), т. е. диод открыт. При подаче положительного импульса входного напряжения прямое напряжение на диоде увеличивается и режим работы диода скачком переходит в точку Б. Ток уменьшается до минимального значения Imin, что условно можно считать закрытым состоянием диода. А если установить постоянное напряжение Е, соответствующее точке Б, то можно переводить диод в точку А подачей импульсов напряжения отрицательной полярности.
Рисунок 2.38 – Работа туннельного диода в импульсном режиме
Туннельные диоды могут применяться в технике СВЧ, а также во многих импульсных радиоэлектронных устройствах, рассчитанных на высокое быстродействие. Помимо весьма малой инерционности достоинством туннельных диодов является их стойкость к ионизирующему излучению, а также малое потребление энергии от источника питания. К сожалению, эксплуатация туннельных диодов выявила существенный их недостаток. Он заключается в том, что эти диоды подвержены значительному старению, т. е. с течением времени их характеристики и параметры заметно изменяются, что может привести к нарушению нормальной работы того или иного устройства. Надо полагать, что в дальнейшем этот недостаток удастся свести к минимуму.
Если для диода применить полупроводник с концентрацией примеси около 1018 см–3, то при прямом напряжении туннельный ток практически отсутствует и в вольт-амперной характеристике нет падающего участка (рисунок 2.39). Зато при обратном напряжении туннельный ток по-прежнему значителен, и поэтому такой диод хорошо пропускает ток в обратном направлении. Подобные диоды, получившие название обращенных, могут работать в качестве детекторов на более высоких частотах, нежели обычные диоды.
Рисунок 2.39 – Вольтамперная характеристика и условное графическое обозначение обращенного диода
Все туннельные диоды имеют весьма малые размеры. Например, они могут быть оформлены в цилиндрических герметичных металлостеклянных корпусах диаметром 3 – 4 мм и высотой около 2 мм. Выводы у них гибкие ленточные. Масса не превышает 0,15 г.
В настоящее время разрабатываются новые типы туннельных диодов, исследуются новые полупроводниковые материалы для них и проблемы замедления старения.