Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Скачиваний:
25
Добавлен:
11.05.2015
Размер:
641.02 Кб
Скачать

Digital Systems Testing and Design for Testability

Prof. Dr. V.N.Yarmolik

Lecture course: 48 hours lectures, 32 hours lab. works

5. Self-Testing VLSI Design

1

5.Self-Testing VLSI Design

5.1. Definitions

Built-In Self-Test (BIST) [Built-In Test, Self-test, Autonomous Test or

Self-Verification], means the capability of a chip, board, or system to test itself. The goal of Built-In Self-Test is to add devices to a design that will allow it to test itself.

Built-In-Test Equipment (BITE). The hardware/software incorporated into a unit to provide DFT or BIST.

On-Line BIST. BIST in which testing occurs during normal operation. Concurrent.

Concurrent On-line BIST. A form of on-line BIST in which testing occurs simultaneously with the normal function.

Off-Line BIST. A form of on-line BIST where testing is carried out while the system is not in its normal operation.

Functional Off-Line BIST. Off-line BIST that uses tests based on the functional description of the circuit-under-test.

Structural Off-line BIST. Off-line BIST that uses tests based on the structure of the circuit-under-test.

2

5.Self-Testing VLSI Design

5.1.Circuit Structures for BIST

Several schemes for incorporating BIST techniques into a design have been proposed. They fall naturally into four classes:

those that assume no special structure to the circuit under test; those that make use of scan paths in the circuit under test;

those that use the concurrent checking (implicit) circuitry of the design.

BIST Structure for Circuit without Scan Paths.

Normal

n

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Inputs

 

 

 

MUX

n

Circuit

m

 

Normal

 

 

 

 

 

 

 

 

 

 

 

 

 

Outputs

 

LFSR

n

 

 

 

Under

 

 

 

 

 

 

 

 

 

 

 

 

 

m

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Test

 

 

MUX

 

 

 

 

Pass/Fail

 

 

 

 

 

 

 

 

 

 

 

SA

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5.Self-Testing VLSI Design

5.1.Circuit Structures for BIST BIST Structure for Circuit without Scan Paths. Intel 80-386

L

13

 

 

16

 

M

 

L

16

 

 

18

 

M

F

 

PLA1

 

 

F

 

PLA2

 

 

 

I

 

 

 

I

 

 

 

 

 

 

S

 

 

 

 

 

S

 

S

 

 

 

 

 

S

R

 

 

 

 

 

R

 

R

 

 

 

 

 

R

L

19

 

12

M

L

12

 

37

M

F

PLA3

F

ROM

I

I

S

 

 

 

S

S

 

 

 

S

R

 

 

 

R

R

 

 

 

R

CU

 

Ref. S

 

 

 

 

 

 

1

 

32

32

1

 

 

 

 

 

1

 

16

 

 

 

 

 

 

 

 

 

 

 

 

 

 

RG

 

ALU

 

 

SA

SA

 

 

 

1

 

 

 

 

1

 

 

 

 

 

SA

SA

 

 

 

 

 

 

 

 

4

5.Self-Testing VLSI Design

5.1.Circuit Structures for BIST

BILBO Testing

 

B

CC1

B

CC2

 

I

I

 

L

L

 

B

 

B

 

 

O

 

O

 

1 Test Session

PRPG

 

MISR

 

2 Test Session

MISR

 

PRPG

 

B

CC1

B

CC2

I

I

L

L

B

 

B

 

O

 

O

 

PRPG and

 

MISR and

 

MISR

 

PRPG

 

These figures show how replacing the two registers in this design with BILBOs will facilitate testing.

5

5.Self-Testing VLSI Design

5.1.Circuit Structures for BIST BIST Case Study – TMS32010 Data Path

 

R1a

R1b

 

8

8

 

Multiplier

 

 

16

 

R2

 

 

16

16

6

 

 

Control

ALU

PRPG

Inputs

16

 

 

 

 

R3

 

PRPG

 

PRPG

R1a

 

R1b

8

 

8

Multiplier

 

 

16

PRPG

R2

MISR

PRPG

 

 

16

 

16

6

 

 

ALU

 

 

16

 

R3

 

 

This is a case study in the literature which describes various configuration of BIST for a section of the TMS32010 data path shown here.

MISR

BILBO Scheme

6

2 test session required

 

5.Self-Testing VLSI Design

5.1.Circuit Structures for BIST BIST Case Study – TMS32010 Data Path

 

PRPG

PRPG

 

R1a

R1b

 

8

8

 

Multiplier

 

 

16

 

PRPG

R2

 

16

16

 

6

 

PRPG

ALU

 

 

 

16

 

R3

 

MISR

Single Signature Testing Scheme

1 test session required

PRPG PRPG

R1a R1b

8

8

Multiplier

16

Extended R2

MISR

16

16

6

 

ALU

 

16

 

R3

MISR

MISR Scheme 1

7

1 test session required

 

5.Self-Testing VLSI Design

5.1.Circuit Structures for BIST BIST Case Study – TMS32010 Data Path

 

PRPG

PRPG

 

This table show the results of the

 

R1a

R1b

various schemes. Twenty different runs with

 

8

8

different seeds for the PSRGs were done. For

 

Multiplier

designs 1, 3, and 4, the simulation was

 

 

 

16

stopped when fault coverage reached 100%.

 

R2

MISR

For design 2, fault coverage saturated at

 

64.5%.

 

 

 

 

 

16

16

 

 

Single

 

 

 

6

 

 

 

MISR

MISR

 

 

No. of test

BILBO

signatu

PRPG

ALU

 

Scheme

Scheme

 

patterns

Scheme

re

 

 

 

 

 

 

 

testing

I

II

 

 

 

 

 

 

 

 

16

 

Average

2,177

>3,000

1,457

1,378

 

 

 

 

R3

MISR

Minimum

830

-

634

721

 

 

 

Maximum

3,619

-

2,531

2,121

 

MISR Scheme 2

Fault

100%

64.5%

100%

8100%

 

1 test session required

 

Coverage

 

 

 

 

5.Self-Testing VLSI Design

5.1.Self-Testing of VLSI with Scan path

Self-Testing based on Scan Path and Signature Analysis. S3 –Technology

 

 

 

 

 

...

 

Inputs

 

 

 

 

 

...

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

PRPG

 

 

 

Input RG

 

 

 

 

 

 

 

 

...

 

CC1

 

...

Internal RG

 

...

 

CC2

...

...

A S3-technique modification it the LOCST that have been design by IBM for LSSD circuit. Compare to S3 –technique, the main difference of LOCST is that extra storage elements have been introduced in the VLSI design to create PRPG and MISR.

Output RG

 

 

 

 

MISR

 

 

 

 

 

 

 

 

 

...

 

 

 

 

 

 

...

9

 

 

 

Outputs

 

 

 

 

 

 

 

 

 

5.Self-Testing VLSI Design

5.1.Self-Testing of VLSI with Scan path

STUMPS Architecture

 

 

 

 

 

 

 

 

 

 

 

 

 

L

 

Pha-

 

 

 

 

Scan chain

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Scan chain

 

 

 

 

 

 

 

 

 

F

 

se

 

 

 

 

 

 

 

 

 

 

 

 

S

 

 

 

 

 

 

 

 

 

 

 

Shi-

 

 

 

 

Scan chain

 

 

 

 

 

 

 

 

 

R

 

fter

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Scan chain

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CUT

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Test Control

 

 

 

 

 

 

 

 

 

 

Fault coverage based on this

Marchitecture can be reached 95-96%.

I

For improving the fault

S

coverage the additional test point have

R

to be added, as well as deterministic

 

test patterns generated by ATPG.

10

Соседние файлы в папке КиДСВТ_Лекции_2014