
- •Учебное пособие
- •1. Моделирование. Основные понятия и принципы
- •2. Аналитическое моделирование
- •2.1. Математические модели.
- •2.2. Типовые схемы моделирования
- •2.3. Непрерывно-детерминированные модели (d-схемы)
- •2.4. Дискретно-детерминированные модели (f-схемы)
- •2.5. Дискретно-стохастические модели (р-схемы)
- •2.6. Марковский случайный процесс
- •2.7 Непрерывно – стохастические модели (q– схемы)
- •2.7.1. Системы массового обслуживания. Потоки событий
- •2.7.2. Простейший поток
- •2.7.3. Непрерывные марковские цепи. Уравнения Колмогорова
- •2.7.4.Диаграмма интенсивностей переходов
- •2.7.5 Формула Литтла
- •2.7.6.Исследование смо с помощью диаграмм интенсивностей переходов
- •2.7.7. Замкнутые системы массового обслуживания (смо с ожиданием ответа)
- •2.7.8. Распределение Эрланга. Метод этапов
- •2.7.8. Немарковские смо
- •3. Имитационное моделирование
- •3.1. Условия примененияимитационного моделирования
- •3.2. Этапы имитационного моделирования
- •3.3. Способы моделирования случайных величин
- •3.4. Равномерно-распределённые случайные числа (ррсч).
- •3.4.1. Методы формирования ррсч.
- •3.4.2. Проверка качества последовательностей ррсч
- •1) Проверка равномерности.
- •2) Проверка стохастичности
- •3) Проверка независимости
- •3.5. Формирование случайных величин с заданным законом распределения.
- •3.5.1. Метод обратной функции.
- •3.5.2. Универсальный метод
- •3.5.3. Метод исключения (отбраковки, режекции, Дж. Неймана)
- •3.5.4. Метод композиции (суперпозиции).
- •3.6. Формирование случайных векторов с заданными вероятностными характеристиками
- •3.7. Моделирование случайных событий
- •2) Полная группа несовместных событий
- •3. 8. Сетевые модели
- •3.8.1. Сети Петри
- •3.8.3. Сетевая модель взаимодействующих параллельных процессов в операционной системе.
- •3.9. Управление модельным временем
- •3.10. Планирование машинных экспериментов
- •3.11. Обработка экспериментальных данных
- •3.11.1. Экспериментальные оценки
- •3.11.2. Оценки для математического ожидания и дисперсии
- •3.11.2. Доверительные интервал и вероятность
- •3.11.3. Точность. Определение числа реализаций
- •Литература Основная литература
3.3. Способы моделирования случайных величин
При создании имитационной модели возникает необходимость моделирования различных случайных факторов, к которым относятся случайные величины, случайные события и случайные процессы. Формирование на ЭВМ реализаций случайных объектов любой природы сводится к выработке и преобразованию случайных чисел.
На практике используются три основных способа генерации случайных чисел: аппаратный (физический), файловый (табличный) и алгоритмический (программный). Рассмотрим их, отметив достоинства и недостатки каждого.
Аппаратный способ. При этом способе генерации случайные числа вырабатываются специальной электронной приставкой — генератором (датчиком) случайных чисел, служащей в качестве одного из внешних устройств ЭВМ. Таким образом, реализация этого способа генерации не требует дополнительных вычислительных операций ЭВМ по выработке случайных чисел, а необходима только операция обращения к внешнему устройству (датчику). В качестве физического эффекта, лежащего в основе таких генераторов чисел, чаще всего используются шумы в электронных и полупроводниковых приборах, явления распада радиоактивных элементов и т. д.
Достоинства:
реализация этого способа генерации не требует дополнительных вычислительных операций ЭВМ по выработке случайных чисел, а необходима только операция обращения к внешнему устройству;
не занимается место в памяти машины для хранения больших массивов чисел.
Недостатки:
требуется периодическая проверка статистических характеристик последовательностей;
нельзя повторно воспроизводить одни и те же последовательности;
используется специальное устройство и средства его сопряжения с ЭВМ;
необходимы меры по обеспечению стабильности работы генератора.
Табличный способ. При использовании этого способа случайные числа, оформленные в виде таблицы, помещаются во внешнюю или оперативную память ЭВМ, предварительно сформировав из них соответствующий файл (массив чисел). Однако этот способ получения случайных чисел при моделировании систем на ЭВМ обычно рационально использовать при сравнительно небольшом объеме таблицы и соответственно файла чисел, когда для хранения можно применять оперативную память. Хранение файла во внешней памяти при частном обращении в процессе статистического моделирования не рационально, так как вызывает существенное увеличение затрат машинного времени при моделировании из-за необходимости обращения к внешнему накопителю (на магнитных дисках, лентах и т. д.). Возможны промежуточные способы организации файла, когда он переписывается в оперативную память периодически по частям. Это уменьшает время на обращение к внешней памяти, но сокращает объем оперативной памяти, который можно использовать для моделирования процесса функционирования системы.
Достоинства:
— требуется однократная проверка статистических характеристик;
— можно повторно воспроизводить последовательности.
Недостатки:
— запас чисел ограничен;
— занимает много места в оперативной памяти или необходимо время на обращение к внешней памяти;
— невозможно при проведении эксперимента поменять значения статистических характеристик.
Алгоритмический способ. Способ получения последовательностей случайных чисел основан на формировании случайных чисел в ЭВМ с помощью специальных алгоритмов и реализующих их программ. Каждое случайное число вычисляется с помощью соответствующей программы по мере возникновения потребностей при моделировании системы на ЭВМ.
Достоинства:
— требуется однократная проверка статистических характеристик;
— можно многократно воспроизводить последовательности чисел;
— занимает мало места в памяти машины;
— не используются внешние устройства.
Недостатки:
— псевдослучайность чисел;
— Запас чисел последовательности ограничен ее периодом;
— Существенные затраты машинного времени.
Сравнение достоинств и недостатков трех перечисленных способов получения случайных чисел показывает, что алгоритмический способ получения случайных чисел наиболее рационален на практике при моделировании систем на ЭВМ.