Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Medical Image Processing.pdf
Скачиваний:
28
Добавлен:
11.05.2015
Размер:
6.14 Mб
Скачать

4 Deformable Models and Level Sets in Image Segmentation

85

Fig. 4.19 Surface evolution during the segmentation process of spinal cord from the MRI image (the number in the left corner of each image represents the number of elapsed iterations)

4.5 Conclusion

This chapter describes some of the basic concepts of deformable models and their application in different cases of image segmentation. Image segmentation plays a critical role in almost all aspects of image analysis; it has opened a wide range of challenging problems oriented towards accurate featuring and geometric extraction of different types of images. The deformable model successfully overcomes the limitation of classical low-level image processing by providing an elegant and compact representation of shapes and objects in image analysis.

86

A. Alfiansyah

To gain the best performance of segmentation, the particular deformable model should be carefully chosen according to the application context. In general practice, the parametric deformable model runs faster than geometric ones but its typical shape representation is considerable lower.

References

1.Terzopoulos, D., McInerney, T.: Deformable models in medical image analysis: A survey. Med. Image Anal. 1, 91–108 (1996)

2.Falcao, A., Udupa, J., Samarasekera, S., Sharma, S.: User steered image segmentation paradigm: Livewire and livelane. Graph. Models Image Process. 60(4), 233–260 (1998)

3.Mortensen, E.N.: Interactive segmentation with intelligent scissors. Graph. Models Image Process. 60 (5), 349–384 (1998)

4.Falcao, A. et al.: A 3D generalization of user-steered live-wire segmentation. Med. Image Anal. 4(4), 389–402. (2000)

5.Schenk, A.M., Guido, P., Peitgen, H.-O.: Efficient semiautomatic segmentation of 3D objects in medical images. In: Medical Image Computing and Computer-Assisted Intervention, MICCAI 2000, vol. 1935, pp. 186–195. (2000)

6.Grady, L., et al. Random Walks for Interactive Organ Segmentation in Two and Three Dimensions: Implementation and Validation. , 773–780. 2005

7.Pham, D.L., Xu, C., Prince, J.L.: Current methods in medical image segmentation. Annu. Rev. Biomed. Eng. 2(1), 315–337 (2000)

8.McInerney, T., Terzopoulos, D.: Deformable models in medical image analysis: A survey. Med. Image Anal. 1(2), 91–108 (1996)

9.Kirbas, C., Quek, F.: A review of vessel extraction techniques and algorithms. , ACM Comput. Surv. 36(2), 81–121 (2004)

10.Suri, J.S., et al.: Shape recovery algorithms using level sets in 2-D/3-D medical imagery(partII): a state-of-the-art review. Pattern Anal. Appl. 5(1), 77–89 (2002)

11.Suri, J.S., et al.: A review on MR vascular image processing algorithms: Acquisition and prefiltering: part I. IEEE Trans. Inform. Technol. Biomed. 6(4), 324–337 (2002)

12.Kass, M., Witkin, A., Terzopoulos, D.: Snakes: Active contour models. Int. J. Comput. Vis. 321–322 (1998)

13.Fischler, M., Elschlager, R.: The representation and matching of pictorial images. ., IEEE Trans.– Comput. 22, 67–92 (1973)

14.Widrow, B.: The “rubber-mask” technique. Pattern Recogn. 5, 175–211 (1973)

15.Williams, D., Shah, M.: A fast algorithm for active contours and curvature estimation. Comput.Vis. Graph. Image Process. Image Underst. 55(1), 14–26 (1992)

16.Cohen, L.D.: On active contour models and balloons. , Comput. Vis. Graph. Image Process. Image Underst. 211–218 (1991)

17.Cohen, L.D., Cohen, I.: Finite-element methods for active contour models and balloons for 2D and 3D images. IEEE Trans. Pattern Anal. Mach. Intell. 1131–1147 (1993)

18.Xu, C., Prince, J.L.: Generalized gradient vector flow external forces for active contours. Signal Process. 71(2), 131–139 (1998)

19.Xu, C., Prince, J.L.: Snakes, shapes, and gradient vector flow. IEEE Trans. Image Process. 7(3), 359–369 (1998)

20.Amini, A.A., Weymouth, T.E., Jain, R.C.: Using dynamic programming for solving variational problems in vision. IEEE Trans. Pattern Anal. Mach. Intell. 12(9), 855 (1990)

21.Saad, Y.: Iterative methods for sparse linear systems, 2nd edn. s.l. SIAM Publisher, Philadelphia (2003)

4 Deformable Models and Level Sets in Image Segmentation

87

22.Menet, S., Saint-Mark, P., Medioni, G.: B-snakes: implementation and application to stereo. Image Underst. Workshop. 720–726 (1997)

23.Caselles, V., Kimmel, R., Sapiro, G.: Geodesic active contours. Int. J. Comput. Vis. 22(1), 61–79 (1997)

24.Duncan, L.H., Staib, J.S.: Boundary fitting with parametrically deformable models. Trans. Pattern Recogn. Mach. Intell. 14(11), 1061–1075 (1997)

25.Malladi, R., Sethian, J.A., Vemuri, B.C.: Shape modeling with front propagation: A level set approach. IEEE Trans. Pattern Anal. Mach. Intell. 17(2), 158–175 (1995)

26.Vemuri, B.C., Y., J. Yeand. Image registration via level-set motion: Applications to atlas-based segmentation. Medical Image Analysis, 7(1), 1–20 (2003)

27.Osher, S., Sethian, J.A.: Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations. J. Comput. Phys. 79, 12–49 (1988)

28.Tanenbaum, A.: Three snippets of curve evolution theory in computer vision. Math. Comput. Model. 24, 103–119 (1996)

29.Kichenassamy, S., et al.: Conformal curvature flows: From phase transitions to active vision. , Archive of Rational Mechanics and Analysis 136, 275–301 (1996)

30.Caselles, V., et al.: A geometric model for active contour. Numerische Mathematik 66, 1–31 (1993)

31.Yezzi, A., et al.: A geometric snake model for segmentation of medical imagery. IEEE Trans. Med. Imaging, 16, 199–209 (1997)

32.Chan, T.F., Sandberg, B., Vese, L. Active contours without edges for vector valued images. J. Vis. Commun. Image Represent. 11, 130–141 (2000)

33.Chan, T.F., Vese, L.A.: Active contours without edges. IEEE Trans. Image Process. 266–277 (2001)

34.Chan, T.F., Vese, L.A.: A Multiphase level set framework for image segmentation using the Mumford and Shah model. Int. J. Comput. Vis. 50( 3), 271–293 (2002)

35.Alfiansyah, A., Streichenberger, R., Kilian, P., Bellemare, M.-E., Coulon, O.: Automatic segmentation of hip bone surface in ultrasound images using an active contour. In: CARS’2006, Computed Assisted Radiology and Surgery, in International Journal of Computer Assisted Radiology and Surgery, 1, supplement 1, 115–116, Osaka Japan, 2006.

36.Alfiansyah, A., Ng, K.H., Lamsudin, R.: Deformable model for serial ultrasound images segmentation: application to computer assisted hip athropasty. Singapore: s.n., In: International Conference on BioMedical Engineering (2008)

37.Lopez Perez, L., Le Maitre, J., Alfiansyah A., Bellemare, M.-E.: Bone Surface reconstruction using localized freehand ultrasound imaging. In: Vancouver: 30th Annual International IEEE EMBS Conference, pp. 2964–2967. (2008)

38.Montagnat, J., Delingette, H., Ayache, N.: A review of deformable surfaces: topology, geometry and deformation. Image Vis. Comput. 19, 1023–104037 (2001)

39.Vray, D., et al.: {3D Quantification of Ultrasound Images: Application to Mouse Embryo Imaging In Vivo}. 2002

40.Liu, Y.J. et al.: Computerised prostate boundary estimation in ultrasound images using the radial bas-relief method. , Med. Biol. Eng. Comput. 35, 4450–4454 (1997)

41.Tauber, P., Batatia, H., Ayache, A.: Robust B-Spline Snakes for Ultrasound Images Segmentation. s.l.: IEEE, 2004

42.Liu, F., et al.: Liver segmentation for CT images using GVF snake. Med. Phy. 32(12), 3699–3706 (2005)

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]