
- •СОДЕРЖАНИЕ
- •ВВЕДЕНИЕ
- •1. РАДИОТЕХНИЧЕСКИЕ СИГНАЛЫ И УСТРОЙСТВА
- •1.1. Радиотехника и информатика
- •1.2. Радиотехнические сигналы
- •1.3. Радиотехнические цепи
- •1.4. Радиотехнические системы
- •1.5. Классификация радиотехнических систем
- •1.6. Структурная схема системы передачи информации
- •1.7. Проблемы обеспечения эффективности радиотехнических систем
- •2.1. Математические модели сигналов
- •2.2. Классификация сигналов
- •2.2.1. Управляющие (модулирующие) сигналы
- •2.2.2. Высокочастотные немодулированные сигналы
- •2.2.3. Модулированные сигналы (радиосигналы)
- •2.2.4. Примеры некоторых сигналов, используемых в радиотехнике
- •2.3. Характеристики сигналов
- •2.4. Геометрические методы в теории сигналов
- •3. СПЕКТРАЛЬНЫЙ И КОРРЕЛЯЦИОННЫЙ АНАЛИЗ СИГНАЛОВ
- •3.1. Обобщенный ряд Фурье
- •3.1.1. Система ортогональных функций и ряд Фурье
- •3.1.2. Свойства обобщенного ряда Фурье
- •3.2. Гармонический спектральный анализ периодических сигналов
- •3.2.1. Тригонометрическая форма ряда Фурье
- •3.2.2. Спектры четных и нечетных сигналов
- •3.2.3. Комплексная форма ряда Фурье
- •3.2.4. Графическое представление спектра периодического сигнала
- •3.3. Гармонический спектральный анализ непериодических сигналов
- •3.3.1. Спектральная характеристика непериодических сигналов
- •3.3.3. Спектральная плотность четного и нечетного сигналов
- •3.3.2. Амплитудный и фазовый спектры непериодического сигнала
- •3.3.5. Свойства преобразования Фурье
- •3.4. Определение спектров некоторых сигналов
- •3.4.1. Спектр колоколообразного (гауссова) импульса
- •3.4.2. Спектральная плотность -функции
- •3.4.3. Спектр функции единичного скачка
- •3.4.4. Спектр постоянного во времени сигнала
- •3.4.5. Спектр комплексной экспоненты
- •3.4.6. Спектр гармонического сигнала
- •3.4.7. Спектральная плотность прямоугольного видеоимпульса
- •3.5. Корреляционный анализ сигналов
- •3.5.1. Общие положения
- •3.5.2. Свойства автокорреляционной функции
- •3.5.3. Автокорреляционная функция периодического сигнала
- •3.5.4. Автокорреляционная функция сигналов с дискретной структурой
- •3.5.5. Взаимокорреляционная функция сигналов
- •3.5.6. Представление периодического сигнала
- •3.5.7. Энергетический спектр и автокорреляционная функция сигнала
- •3.6.1. Теорема Котельникова
- •3.6.2. Доказательство теоремы Котельникова
- •3.6.3. Дискретизация сигнала с конечной длительностью
- •3.6.4. Спектр дискретизированного сигнала
- •4. РАДИОСИГНАЛЫ
- •4.1. Общие сведения о радиосигналах
- •4.2. Радиосигналы с амплитудной модуляцией
- •4.2.2. Спектральный анализ АМ-сигналов
- •4.2.3. Векторное представление сигнала с амплитудной модуляцией
- •4.2.4. Энергетика АМ-сигнала
- •4.2.5. Балансная амплитудная модуляция
- •4.2.6. Однополосная модуляция
- •4.3. Радиосигналы с угловой модуляцией
- •4.3.1. Общие сведения об угловой модуляции
- •4.3.2. Фазовая модуляция
- •4.3.3. Частотная модуляция
- •4.3.4. Спектральный анализ сигналов с угловой модуляцией
- •4.3.5. Угловая модуляция полигармоническим сигналом
- •4.4. Импульсная модуляция
- •4.4.1. Виды импульсной модуляции
- •4.4.2. Спектр колебаний при АИМ
- •4.4.3. Импульсно-кодовая (цифровая) модуляция
- •4.5. Узкополосные сигналы
- •4.5.1. Общие сведения об узкополосных сигналах
- •4.5.2. Аналитический сигнал
- •4.5.3. Свойства аналитического сигнала
- •5.1. Общие сведения о линейных цепях
- •5.2. Основные характеристики линейных цепей
- •5.2.1. Характеристики в частотной области
- •5.2.2. Временные характеристики
- •5.3. Дифференцирующая и интегрирующая цепи
- •5.3.1. Дифференцирующая цепь
- •5.3.2. Интегрирующая цепь
- •5.4. Фильтр нижних частот
- •5.5. Параллельный колебательный контур
- •5.6. Усилители
- •5.6.1. Широкополосный усилитель
- •5.6.2. Резонансный усилитель
- •5.7. Линейные радиотехнические цепи с обратной связью
- •5.7.1. Частотная характеристика цепи с обратной связью
- •5.7.2. Стабилизация коэффициента усиления
- •5.7.3. Коррекция амплитудно-частотной характеристики
- •5.7.4. Подавление нелинейных искажений
- •5.7.5. Устойчивость цепей с обратной связью
- •6. МЕТОДЫ АНАЛИЗА ЛИНЕЙНЫХ ЦЕПЕЙ
- •6.1. Постановка задачи
- •6.2. Точные методы анализа линейных цепей
- •6.2.1. Классический метод
- •6.2.2. Спектральный метод
- •6.2.3. Временной метод
- •6.3. Приближенные методы анализа линейных цепей
- •6.3.1. Приближенный спектральный метод
- •6.3.3. Метод мгновенной частоты
- •7.1. Свойства и характеристики нелинейных цепей
- •7.2. Способы аппроксимации характеристик нелинейных элементов
- •7.2.1. Аппроксимация степенным полиномом
- •7.2.2. Кусочно-линейная аппроксимация
- •7.3. Методы анализа нелинейных цепей
- •7.4. Общее решение задачи анализа нелинейной цепи
- •7.5.1. Гармонический сигнал на входе
- •7.5.2. Бигармонический сигнал на входе
- •8. НЕЛИНЕЙНЫЕ ПРЕОБРАЗОВАНИЯ СИГНАЛОВ
- •8.1. Нелинейное резонансное усиление сигналов
- •8.1.1. Усиление в линейном режиме
- •8.1.2. Усиление в нелинейном режиме
- •8.2. Умножение частоты
- •8.3. Амплитудная модуляция
- •8.3.1. Общие сведения об амплитудной модуляции
- •8.3.2. Схема и режимы работы амплитудного модулятора
- •8.3.3. Характеристики амплитудного модулятора
- •8.3.4. Балансный амплитудный модулятор
- •8.4. Амплитудное детектирование
- •8.4.1. Общие сведения о детектировании
- •8.4.2. Амплитудный детектор
- •8.5. Выпрямление колебаний
- •8.5.1. Общие сведения о выпрямителях
- •8.5.2. Схемы выпрямителей
- •8.6. Угловая модуляция
- •8.6.1. Общие принципы получения сигналов с угловой модуляцией
- •8.6.2. Фазовые модуляторы
- •8.6.3. Частотные модуляторы
- •8.7. Детектирование сигналов с угловой модуляцией
- •8.7.1. Общие принципы детектирования сигналов с угловой модуляцией
- •8.7.2. Фазовые детекторы
- •8.7.3. Частотные детекторы
- •8.8. Преобразование частоты
- •8.8.1. Принцип преобразования частоты
- •8.8.2. Схемы преобразователей частоты
- •ЗАКЛЮЧЕНИЕ
- •ЛИТЕРАТУРА

I1(t) 1( )Im(t) |
и Uk (t) I1(t)R0 1( )Im(t)R0. |
Рис. 8.7. Режим больших входных сигналов амплитудного модулятора
Изменение амплитуды входного высокочастотного напряжения во времени сопровождается изменением угла отсечки, а значит, и коэффициента 1( ). Следовательно, форма огибающей напряжения на контуре может отличаться от формы модулирующего сигнала, что является недостатком рассмотренного метода модуляции. Для обеспечения минимальных искажений необходимо устанавливать определенные пределы изменения угла отсечки и работать при не слишком большом коэффициенте модуляции m.
В схеме амплитудного модулятора, приведенной на рис. 8.8, модулирующий сигнал подается на базу транзистора VT2 генератора стабильного тока. Значение этого тока пропорционально входному напряжению. При малых значениях входных напряжений амплитуда выходного напряжения будет зависеть от модулирующего сигнала следующим образом:
Uвых (t) k1Uн[1 k2sм(t)],
где k1,k2 – коэффициенты пропорциональности.
8.3.3. Характеристики амплитудного модулятора
Для выбора режима работы модулятора и оценки качества его работы используют различные характеристики, основными из которых являются: статическая модуляционная, динамическая модуляционная и частотная характеристики.

Рис. 8.8. Схема амплитудного модулятора с генератором тока
а. Статическая модуляционная характеристика
Статическая модуляционная характеристика (СМХ) – это зависимость амплитуды выходного напряжения модулятора от напряжения смещения при постоянной амплитуде напряжения несущей частоты на входе, т.е.
Uвых f (Uс.м).
При экспериментальном определении статической модуляционной характеристики на вход модулятора подается только напряжение несущей частоты (модулирующий сигнал не подается), изменяется величина Uсм (как бы имитируется изменение модулирующего сигнала в статике) и фиксируется изменение амплитуды несущего колебания на выходе. Вид характеристики (рис. 8.9,а) определяется динамикой изменения средней крутизны ВАХ при изменении напряжения смещения. Линейный возрастающий участок СМХ соответствует квадратичному участку ВАХ, так как на этом участке с ростом напряжения смещения средняя крутизна растет. Горизонтальный участок СМХ соответствует линейному участку ВАХ, т.е. участку с постоянной средней крутизной. При переходе транзистора в режим насыщения появляется горизонтальный участок ВАХ с нулевой крутизной, что и отражается спадом СМХ.
Статическая модуляционная характеристика позволяет определить величину напряжения смещения Uсм0 и приемлемый диапазон изменения модулирующего сигнала Uм с целью обеспечения его линейной зависимости от выходного напряжения. Работа модулятора должна происходить в пределах линейного участка СМХ. Величина напряжения смещения должна соответствовать середине линейного участка, а максимальное значение модулирующего сигнала не должно выходить за пределы линейного участка СМХ. Можно также определить максимальный коэффициент модуляции mmax , при котором еще нет искажений. Его величина равна mmax UUн .

а |
б |
в |
|
|
|
Рис. 8.9. Характеристики амплитудного модулятора
б. Динамическая модуляционная характеристика
Динамическая модуляционная характеристика (ДМХ) – это зависимость коэффициента модуляции от амплитуды модулирующего сигнала, т.е. m f (Uм). Получить эту характеристику можно экспериментальным путем, либо по статической модуляционной характеристике. Вид ДМХ представлен на рис. 8.9,б. Линейный участок характеристики соответствует работе модулятора в пределах линейного участка СМХ.
в. Частотная характеристика
Частотная характеристика – это зависимость коэффициента модуляции от частоты модулирующего сигнала, т.е. m f ( ). Влияние входного трансформатора приводит к завалу характеристики на низких частотах (рис. 8.9,в). С ростом частоты модулирующего сигнала боковые составляющие амплитудномодулированного колебания удаляются от несущей частоты. Это приводит к их меньшему усилению в силу избирательных свойств колебательного контура, что обусловливает завал характеристики на более высоких частотах . Если полоса частот, занимаемая модулирующим сигналом, находится в пределах горизонтального участка 2 1 частотной характеристики, то искажения при модуляции будут минимальны.
8.3.4. Балансный амплитудный модулятор
Для эффективного использования мощности передатчика применяют балансную амплитудную модуляцию. При этом формируется амплитудномодулированный сигнал, в спектре которого отсутствует составляющая на несущей частоте.
Схема балансного модулятора (рис. 8.10) представляет собой сочетание двух типовых схем амплитудных модуляторов с определенными соединениями