
- •СОДЕРЖАНИЕ
- •ВВЕДЕНИЕ
- •1. РАДИОТЕХНИЧЕСКИЕ СИГНАЛЫ И УСТРОЙСТВА
- •1.1. Радиотехника и информатика
- •1.2. Радиотехнические сигналы
- •1.3. Радиотехнические цепи
- •1.4. Радиотехнические системы
- •1.5. Классификация радиотехнических систем
- •1.6. Структурная схема системы передачи информации
- •1.7. Проблемы обеспечения эффективности радиотехнических систем
- •2.1. Математические модели сигналов
- •2.2. Классификация сигналов
- •2.2.1. Управляющие (модулирующие) сигналы
- •2.2.2. Высокочастотные немодулированные сигналы
- •2.2.3. Модулированные сигналы (радиосигналы)
- •2.2.4. Примеры некоторых сигналов, используемых в радиотехнике
- •2.3. Характеристики сигналов
- •2.4. Геометрические методы в теории сигналов
- •3. СПЕКТРАЛЬНЫЙ И КОРРЕЛЯЦИОННЫЙ АНАЛИЗ СИГНАЛОВ
- •3.1. Обобщенный ряд Фурье
- •3.1.1. Система ортогональных функций и ряд Фурье
- •3.1.2. Свойства обобщенного ряда Фурье
- •3.2. Гармонический спектральный анализ периодических сигналов
- •3.2.1. Тригонометрическая форма ряда Фурье
- •3.2.2. Спектры четных и нечетных сигналов
- •3.2.3. Комплексная форма ряда Фурье
- •3.2.4. Графическое представление спектра периодического сигнала
- •3.3. Гармонический спектральный анализ непериодических сигналов
- •3.3.1. Спектральная характеристика непериодических сигналов
- •3.3.3. Спектральная плотность четного и нечетного сигналов
- •3.3.2. Амплитудный и фазовый спектры непериодического сигнала
- •3.3.5. Свойства преобразования Фурье
- •3.4. Определение спектров некоторых сигналов
- •3.4.1. Спектр колоколообразного (гауссова) импульса
- •3.4.2. Спектральная плотность -функции
- •3.4.3. Спектр функции единичного скачка
- •3.4.4. Спектр постоянного во времени сигнала
- •3.4.5. Спектр комплексной экспоненты
- •3.4.6. Спектр гармонического сигнала
- •3.4.7. Спектральная плотность прямоугольного видеоимпульса
- •3.5. Корреляционный анализ сигналов
- •3.5.1. Общие положения
- •3.5.2. Свойства автокорреляционной функции
- •3.5.3. Автокорреляционная функция периодического сигнала
- •3.5.4. Автокорреляционная функция сигналов с дискретной структурой
- •3.5.5. Взаимокорреляционная функция сигналов
- •3.5.6. Представление периодического сигнала
- •3.5.7. Энергетический спектр и автокорреляционная функция сигнала
- •3.6.1. Теорема Котельникова
- •3.6.2. Доказательство теоремы Котельникова
- •3.6.3. Дискретизация сигнала с конечной длительностью
- •3.6.4. Спектр дискретизированного сигнала
- •4. РАДИОСИГНАЛЫ
- •4.1. Общие сведения о радиосигналах
- •4.2. Радиосигналы с амплитудной модуляцией
- •4.2.2. Спектральный анализ АМ-сигналов
- •4.2.3. Векторное представление сигнала с амплитудной модуляцией
- •4.2.4. Энергетика АМ-сигнала
- •4.2.5. Балансная амплитудная модуляция
- •4.2.6. Однополосная модуляция
- •4.3. Радиосигналы с угловой модуляцией
- •4.3.1. Общие сведения об угловой модуляции
- •4.3.2. Фазовая модуляция
- •4.3.3. Частотная модуляция
- •4.3.4. Спектральный анализ сигналов с угловой модуляцией
- •4.3.5. Угловая модуляция полигармоническим сигналом
- •4.4. Импульсная модуляция
- •4.4.1. Виды импульсной модуляции
- •4.4.2. Спектр колебаний при АИМ
- •4.4.3. Импульсно-кодовая (цифровая) модуляция
- •4.5. Узкополосные сигналы
- •4.5.1. Общие сведения об узкополосных сигналах
- •4.5.2. Аналитический сигнал
- •4.5.3. Свойства аналитического сигнала
- •5.1. Общие сведения о линейных цепях
- •5.2. Основные характеристики линейных цепей
- •5.2.1. Характеристики в частотной области
- •5.2.2. Временные характеристики
- •5.3. Дифференцирующая и интегрирующая цепи
- •5.3.1. Дифференцирующая цепь
- •5.3.2. Интегрирующая цепь
- •5.4. Фильтр нижних частот
- •5.5. Параллельный колебательный контур
- •5.6. Усилители
- •5.6.1. Широкополосный усилитель
- •5.6.2. Резонансный усилитель
- •5.7. Линейные радиотехнические цепи с обратной связью
- •5.7.1. Частотная характеристика цепи с обратной связью
- •5.7.2. Стабилизация коэффициента усиления
- •5.7.3. Коррекция амплитудно-частотной характеристики
- •5.7.4. Подавление нелинейных искажений
- •5.7.5. Устойчивость цепей с обратной связью
- •6. МЕТОДЫ АНАЛИЗА ЛИНЕЙНЫХ ЦЕПЕЙ
- •6.1. Постановка задачи
- •6.2. Точные методы анализа линейных цепей
- •6.2.1. Классический метод
- •6.2.2. Спектральный метод
- •6.2.3. Временной метод
- •6.3. Приближенные методы анализа линейных цепей
- •6.3.1. Приближенный спектральный метод
- •6.3.3. Метод мгновенной частоты
- •7.1. Свойства и характеристики нелинейных цепей
- •7.2. Способы аппроксимации характеристик нелинейных элементов
- •7.2.1. Аппроксимация степенным полиномом
- •7.2.2. Кусочно-линейная аппроксимация
- •7.3. Методы анализа нелинейных цепей
- •7.4. Общее решение задачи анализа нелинейной цепи
- •7.5.1. Гармонический сигнал на входе
- •7.5.2. Бигармонический сигнал на входе
- •8. НЕЛИНЕЙНЫЕ ПРЕОБРАЗОВАНИЯ СИГНАЛОВ
- •8.1. Нелинейное резонансное усиление сигналов
- •8.1.1. Усиление в линейном режиме
- •8.1.2. Усиление в нелинейном режиме
- •8.2. Умножение частоты
- •8.3. Амплитудная модуляция
- •8.3.1. Общие сведения об амплитудной модуляции
- •8.3.2. Схема и режимы работы амплитудного модулятора
- •8.3.3. Характеристики амплитудного модулятора
- •8.3.4. Балансный амплитудный модулятор
- •8.4. Амплитудное детектирование
- •8.4.1. Общие сведения о детектировании
- •8.4.2. Амплитудный детектор
- •8.5. Выпрямление колебаний
- •8.5.1. Общие сведения о выпрямителях
- •8.5.2. Схемы выпрямителей
- •8.6. Угловая модуляция
- •8.6.1. Общие принципы получения сигналов с угловой модуляцией
- •8.6.2. Фазовые модуляторы
- •8.6.3. Частотные модуляторы
- •8.7. Детектирование сигналов с угловой модуляцией
- •8.7.1. Общие принципы детектирования сигналов с угловой модуляцией
- •8.7.2. Фазовые детекторы
- •8.7.3. Частотные детекторы
- •8.8. Преобразование частоты
- •8.8.1. Принцип преобразования частоты
- •8.8.2. Схемы преобразователей частоты
- •ЗАКЛЮЧЕНИЕ
- •ЛИТЕРАТУРА
4.РАДИОСИГНАЛЫ
4.1.Общие сведения о радиосигналах
Передача информации на большие расстояния осуществляется с помощью высокочастотных электромагнитных колебаний. Для этого по закону передаваемого сообщения изменяется один или несколько параметров высокочастотного колебания, которое называется несущим. В качестве несущего колебания широко используется простое гармоническое колебание, частота которого o должна быть значительно больше максимальной частоты спектра передаваемого сообщения m . Чем меньше отношение m o , тем меньше проявляется несовершенство характеристик канала связи.
Процесс, в результате которого происходит изменение параметра(ов) несущего колебания по закону передаваемого сообщения, называется модуляцией (lat. modulatio – мерность, размеренность). Модуляция обеспечивает перенос спектра передаваемого сообщения из низкочастотной области в область высоких частот. При этом формируется высокочастотное модулированное колебание
–радиосигнал.
Вобщем случае радиосигнал можно представить:
–в тригонометрическом виде s(t) U(t)cos[ 0t (t)] U(t)cos (t);
–в комплексном виде s(t) U(t)e j[ 0 (t)] U(t)e j (t),
где U(t), (t), (t) – амплитуда, начальная и полная фазы, изменения которых связаны с изменениями модулирующего сигнала.
В зависимости от того, какой параметр несущего колебания используется как носитель передаваемого сообщения, различают:
– амплитудную модуляцию |
s(t) U(t)cos( 0t ) U(t)cos (t); |
– угловую модуляцию |
s(t) Uн cos[ 0t (t)] Uн cos (t). |
При угловой модуляции изменение фазового сдвига (t) происходит как при модуляции мгновенной частоты (t), так и при модуляции непосредственно фазового сдвига колебания. Поэтому различают два вида угловой модуля-
ции: частотную модуляцию (ЧМ) и фазовую модуляцию (ФМ). Эти два вида модуляции тесно связаны друг с другом и отдельно принципиально не осуществимы. Связь между ЧМ и ФМ определяется формулами, связывающими частоту и фазу гармонического колебания:
|
d (t) |
|
|
|
d (t) |
|
t |
|
(t) |
0 |
|
и |
(t) (t)dt 0t (t). |
||||
|
|
|||||||
|
dt |
|
|
dt |
0 |
|||
Функции U(t ) и (t) |
|
|
|
|
||||
являются медленно меняющимися функциями вре- |
мени. Это означает, что относительные изменения амплитуды и фазы за период высокочастотного колебания T0 очень малы, т.е.