
- •1.Современные системы телекоммуникаций
- •2. Построение сетей электросвязи
- •2.1. Принципы построения сетей связи
- •2.2. Магистральные и зоновые сети связи
- •2.3. Городские телефонные сети
- •2.4. Сети сельской телефонной связи и проводного вещания
- •4. Коаксиальные кабели
- •4.1. Электрические процессы в коаксиальных цепях
- •4.2. Передача энергии по коаксиальной цепи с учетом потерь в проводниках
- •4.3. Емкость и проводимость изоляции коаксиальных цепей
- •4.4. Вторичные параметры передачи коаксиальных цепей
- •4.5. Оптимальное соотношение диаметров проводников коаксиальной цепи
- •4.6. Конструктивные неоднородности в коаксиальных кабелях
- •5. Симметричные кабели
- •5.1. Электрические процессы в симметричных цепях
- •5.2. Передача энергии по симметричной цепи с учетом потерь
- •5.3. Емкость и проводимость изоляции симметричной цепи
- •5.4. Параметры цепей воздушных линий связи
- •5.5. Основные зависимости первичных параметров симметричных цепей
- •5.6. Вторичные параметры симметричных цепей
- •6. Волноводы
- •6.1. Физические процессы, происходящие в волноводах
- •7. Оптические кабели
- •7.1. Развитие волоконно-оптической связи
- •7.2. Достоинства оптических кабелей и область их применения
- •7.3. Физические процессы в волоконных световодах
- •6.4. Лучевая теория световодов
- •7.5. Волновая теория световодов
- •7.6. Потери энергии и затухание
- •7.8. Дисперсия и пропускная способность
- •Глава 8. Заимные влияния и помехозащищенность цепей в линиях связи
- •8.1. Проблема электромагнитной совместимости в линиях связи
- •8.4. Косвенные влияния между цепями
- •8.5. Влияния в коаксиальных кабелях
- •8.6. Нормы на параметры взаимных влияний
- •8.7. Меры защиты цепей и трактов линии связи от взаимных влиянии
- •8.9. Симметрирование высокочастотных кабелей
- •9. Проектирование линейных сооружении связи
- •9.1. Организация проектирования линейных сооружении связи
- •9.2. Этапы проектирования
- •9.3. Оптимизация методов проектирования линий и сетей связи
- •9.5. Технология реального проектирования лсс
- •9.6. Выбор системы передачи, типа линии связи, марки кабеля и трассы строительства
- •9.7. Определение мест установки нуп и длин ретрансляционных участков кабельных магистралей
- •9.8. Рабочие чертежи
- •9.9. Основные положения проектирования подсистем кабельных магистралей
- •9.10. Распределение абонентов по территории города и выбор места расположения станций
- •9.11. Выбор емкости шкафа и проектирование распределительной сети гтс
- •9.12. Проектирование магистральной кабельной сети и канализации гтс
- •9.13. Многоканальные соединительные линии гтс
- •9.14. Перспективы развития методов проектирования сетей гтс
- •Глава 10. Строительство линейных сооружении связи
- •10.1. Прокладка кабельных линий связи
- •10.1.1. Подготовительные работы
- •10.1.2. Подготовка кабеля к прокладке
- •10.1.3. Группирование строительных длин
- •10.1.5. Прокладка подземных кабелей
- •10.1.7. Установка замерных столбиков
- •10.1.8. Механизация строительства
- •10.1.12. Прокладка подводных кабелей
- •10.1.13. Особенности прокладки оптических кабелей
- •Глава 11. Защита сооружений связи от внешних влияний и коррозии
- •11.1. Теория влияния
- •11.1.1. Физическая сущность и источники электромагнитного влияния на цепи связи
- •11.1.2. Виды и классификация внешних влиянии
- •11.1.3. Влияние атмосферного электричества
- •11.1.4. Влияние линии электропередачи
- •11.1.5. Влияние электрифицированных железных дорог
- •11.1.7. Нормы опасных и мешающих влиянии
- •11.1.8. Расчет опасного электрического влияния
- •11.1.9. Расчет опасного магнитного влияния
- •11.1.10. Расчет мешающих влияний
- •11.1.11. Влияние радиостанций на линии связи
- •11.2. Защита сооружений связи
- •11.2.3. Каскадная защита и молниеотводы
- •11.2.4. Защита от грозы кабельных линий
- •11.2.5. Экранирующие тросы
- •11.2.6. Редукционные и отсасывающие трансформаторы
- •11.2.7. Устройство заземлений
- •11.3. Экранирование кабелей связи
- •11.3.1. Применение экранов
- •11.3.3. Электромагнитостатическое экранирование
- •11.3.4. Электромагнитное экранирование
- •11.3.5. Волновой режим экранирования
- •11.3.7. Экранирующий эффект с учетом продольных токов
- •12. Полосковые линии передачи
- •12.1. Введение
- •12.2. Симметричная полосковая линия передачи
- •12.3. Несимметричная полосковая линия передачи
- •12.4. Щелевая линия
- •12.5. Копланарная полосковая линия
- •12.6. Связанные полосковые линии
- •13. Конструкции и характеристики линий связи
- •13.1. Электрические кабели связи
- •13.1.1. Классификация и маркировка кабелей
- •13.1.2. Проводники
- •13.1.3. Изоляция
- •13.1.4. Типы скруток в группы
- •13.1.6. Защитные оболочки
- •13.1.7. Защитные бронепокровы
- •13.1.8. Междугородные коаксиальные кабели
- •13.1.9. Междугородные симметричные кабели
- •13.1.10. Зоновые (внутриобластные) кабели
- •13.1.11. Городские телефонные кабели
- •13.1.12. Кабели сельской связи и проводного вещания
- •13.2. Оптические кабели связи
- •13.2.1. Классификация оптических кабелей связи
- •13.2.2. Оптические волокна и особенности их изготовления
- •13.2.3. Конструкции оптических кабелей
- •13.2.4. Оптические кабели отечественного производства
4.4. Вторичные параметры передачи коаксиальных цепей
Коаксиальные кабели практически используются в спектре частот от 60 кГц и выше, где R<<L и G<<C. Поэтому вторичные параметры передачи их рассчитываются по следующим формулам:
,
(4.33)
;
;
,
(4.34)
где м - коэффициент затухания вследствие потерь в металле; д -коэффициент затухания вследствие потерь в диэлектрике.
Однако вторичные параметры передачи коаксиальных кабелей целесообразно выражать непосредственно через габаритные размеры (d и D) и параметры изоляции ( и tg).
Коэффициент затухания , дБ/км, находится при подстановке в формулу первичных параметров. Для кабеля с медными проводниками получим:
.
(4.35)
При замене медных проводников на алюминиевые затухание возрастает пропорционально соотношению активных сопротивлений или соответственно обратно пропорционально корню квадратному из проводимостей металлов
,
(4.36)
т. е. затухание коаксиального кабеля с алюминиевыми проводниками больше, чем с медными, на 29%.
При замене только внешнего проводника на алюминиевый затухание возрастает в соотношении
.
(4.37)
При
соотношении радиусов проводников rb/ra
получим
,
т. е. затухание кабеля возрастает всего
на 6%.
Изложенное дает основание сделать вывод о целесообразности применения коаксиальных кабелей с внешним алюминиевым проводником. В этом случае затухание увеличивается всего на 6%, а расход меди на изготовление коаксиального кабеля сокращается на 65%.
Потери
в металле м
изменяются пропорционально
,
а потери в диэлектрикед
связаны с частотой линейным законом и
с увеличением f
возрастают значительно быстрее.
При
использовании высококачественных
диэлектриков (с малым tg)
можно добиться в определенном частотном
диапазоне очень малых диэлектрических
потерь и положить д=0.
При очень высоких частотах они настолько
возрастут, что величина д
играет значительную роль в общем
затухании кабеля. В практически
используемом спектре частот передачи
по коаксиальным кабелям (до
Гц)
при современных кабельных диэлектриках
величина д
незначительна (не превышает 2—3% д
) и затухание увеличивается примерно
пропорционально
.
Коэффициент
фазы ,
рад/км, коаксиальной пары определяется
из уравнения
.
Подставляя
сюда значения L
и С,
получим
.
Коэффициент фазы можно выразить также
через
и
,
рад/км, гдес
— скорость
света, равная 300000 км/с.
Скорость распространения , км/с, электромагнитной энергии по коаксиальным парам
.
(4.38)
Коэффициент сдвига фаз определяет длину волны в кабеле:
.
(4.39)
Из приведенных формул видно, что коэффициент фазы возрастает с увеличением частоты прямолинейно. Это обусловливает почти полное постоянство скорости передачи энергии по коаксиальному кабелю во всем рассматриваемом спектре частот. Скорость передачи уменьшается с увеличением диэлектрической проницаемости. Так, при сплошной полиэтиленовой изоляции (r = 2,3) с = 200000 км/с, а при воздушно-комбинированной изоляции коаксиальной пары (r = 1,1), с = 285000 км/с.
Скорость передачи энергии по коаксиальным парам выше, чем по симметричным, и почти приближается к скорости распространения электромагнитных волн в воздухе (300000 км/с).
Волновое сопротивление Zв, Ом, коаксиальной пары для высоких частот определяется выражением
,
(4.40)
или
.
(4.41)
где
— волновое сопротивление диэлектрика.
Имея
в виду, что
и
,
где
,
Гн/м, и
, Ф/м, получим
,
(4.42)
где
Ом - волновое сопротивление воздушного
пространства. Для средыr
= 1 получим
.
(4.43)
В коаксиальных парах со сплошным диэлектриком (r=2.3) Zв= 50 Ом, а при комбинированной изоляции (r= 1.1) величина волнового сопротивления составляет примерно 75 Ом.